| L(s) = 1 | + (−0.809 − 0.587i)2-s + (0.309 + 0.951i)4-s + (−0.309 − 0.951i)7-s + (0.309 − 0.951i)8-s + (−0.309 − 0.951i)11-s + (0.809 − 0.587i)13-s + (−0.309 + 0.951i)14-s + (−0.809 + 0.587i)16-s + (0.309 − 0.951i)17-s + (−0.809 − 0.587i)19-s + (−0.309 + 0.951i)22-s + (0.309 − 0.951i)23-s − 26-s + (0.809 − 0.587i)28-s + (0.809 + 0.587i)29-s + ⋯ |
| L(s) = 1 | + (−0.809 − 0.587i)2-s + (0.309 + 0.951i)4-s + (−0.309 − 0.951i)7-s + (0.309 − 0.951i)8-s + (−0.309 − 0.951i)11-s + (0.809 − 0.587i)13-s + (−0.309 + 0.951i)14-s + (−0.809 + 0.587i)16-s + (0.309 − 0.951i)17-s + (−0.809 − 0.587i)19-s + (−0.309 + 0.951i)22-s + (0.309 − 0.951i)23-s − 26-s + (0.809 − 0.587i)28-s + (0.809 + 0.587i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 465 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.962 + 0.272i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 465 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.962 + 0.272i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.1105656962 - 0.7948717069i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(-0.1105656962 - 0.7948717069i\) |
| \(L(1)\) |
\(\approx\) |
\(0.5690263872 - 0.3814756198i\) |
| \(L(1)\) |
\(\approx\) |
\(0.5690263872 - 0.3814756198i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 31 | \( 1 \) |
| good | 2 | \( 1 + (-0.809 - 0.587i)T \) |
| 7 | \( 1 + (-0.309 - 0.951i)T \) |
| 11 | \( 1 + (-0.309 - 0.951i)T \) |
| 13 | \( 1 + (0.809 - 0.587i)T \) |
| 17 | \( 1 + (0.309 - 0.951i)T \) |
| 19 | \( 1 + (-0.809 - 0.587i)T \) |
| 23 | \( 1 + (0.309 - 0.951i)T \) |
| 29 | \( 1 + (0.809 + 0.587i)T \) |
| 37 | \( 1 - T \) |
| 41 | \( 1 + (0.809 + 0.587i)T \) |
| 43 | \( 1 + (0.809 + 0.587i)T \) |
| 47 | \( 1 + (-0.809 + 0.587i)T \) |
| 53 | \( 1 + (0.309 - 0.951i)T \) |
| 59 | \( 1 + (0.809 - 0.587i)T \) |
| 61 | \( 1 + T \) |
| 67 | \( 1 - T \) |
| 71 | \( 1 + (-0.309 + 0.951i)T \) |
| 73 | \( 1 + (-0.309 - 0.951i)T \) |
| 79 | \( 1 + (0.309 - 0.951i)T \) |
| 83 | \( 1 + (-0.809 - 0.587i)T \) |
| 89 | \( 1 + (-0.309 - 0.951i)T \) |
| 97 | \( 1 + (-0.309 - 0.951i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.2361774335469783048090962707, −23.39981179203209581822799731963, −22.74465998334382423174951451519, −21.384473271223235270610209454047, −20.76779013144517205028358298003, −19.39874317643978713718344044723, −19.06407252426618223985478243803, −18.05165673241423277338721963112, −17.37414771215859153639946166578, −16.37113404572856904820061033999, −15.50121708768783970960276467552, −15.00108320330660169678858997508, −13.91744267989228195812780371120, −12.70903200618918082253297828094, −11.79496029143696484281026063135, −10.661350567794018675868559048310, −9.84697769465950242961538484534, −8.90188952621074728680070543907, −8.21651114828991466557470840699, −7.084084729420453724950125073050, −6.149478204474857518445179313875, −5.39484190526757432883229220427, −4.02773110450523546437780715908, −2.38378437484113029795934279960, −1.46503361247506828573131992974,
0.31937537437357994142673361249, 1.07858053997965318212991836080, 2.72300849361912919981769436763, 3.472314880585699164738703082338, 4.66335641101723550658034079187, 6.249994726596739356699520855610, 7.15274964112935769370485610920, 8.19255861939990281822273349447, 8.90925356233759692179434821181, 10.09862403102943769183188527610, 10.762288455765885103924803939576, 11.4413287495837403890259273673, 12.770404790950354654400511005574, 13.32698583372772506817688644887, 14.37703609015291964174410551643, 16.00783807402799731016698587190, 16.241189856005929545331008245147, 17.36477641318224376699073480349, 18.09155752012821914107431515334, 19.04804049308633218188479408488, 19.67968769531975767741917339314, 20.70479410030948522418452470853, 21.10963838854084782807468132671, 22.31709467645931555782208936216, 23.080991633862718796191207522210