L(s) = 1 | + (0.809 − 0.587i)3-s − 7-s + (0.309 − 0.951i)9-s + (−0.309 − 0.951i)11-s + (0.309 − 0.951i)13-s + (−0.809 − 0.587i)17-s + (0.809 + 0.587i)19-s + (−0.809 + 0.587i)21-s + (−0.309 − 0.951i)27-s + (0.809 − 0.587i)29-s + (0.809 + 0.587i)31-s + (−0.809 − 0.587i)33-s + (−0.309 + 0.951i)37-s + (−0.309 − 0.951i)39-s + (0.309 − 0.951i)41-s + ⋯ |
L(s) = 1 | + (0.809 − 0.587i)3-s − 7-s + (0.309 − 0.951i)9-s + (−0.309 − 0.951i)11-s + (0.309 − 0.951i)13-s + (−0.809 − 0.587i)17-s + (0.809 + 0.587i)19-s + (−0.809 + 0.587i)21-s + (−0.309 − 0.951i)27-s + (0.809 − 0.587i)29-s + (0.809 + 0.587i)31-s + (−0.809 − 0.587i)33-s + (−0.309 + 0.951i)37-s + (−0.309 − 0.951i)39-s + (0.309 − 0.951i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4600 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.876 - 0.481i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4600 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.876 - 0.481i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4190341916 - 1.632030424i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4190341916 - 1.632030424i\) |
\(L(1)\) |
\(\approx\) |
\(1.073570389 - 0.5400591988i\) |
\(L(1)\) |
\(\approx\) |
\(1.073570389 - 0.5400591988i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 23 | \( 1 \) |
good | 3 | \( 1 + (0.809 - 0.587i)T \) |
| 7 | \( 1 - T \) |
| 11 | \( 1 + (-0.309 - 0.951i)T \) |
| 13 | \( 1 + (0.309 - 0.951i)T \) |
| 17 | \( 1 + (-0.809 - 0.587i)T \) |
| 19 | \( 1 + (0.809 + 0.587i)T \) |
| 29 | \( 1 + (0.809 - 0.587i)T \) |
| 31 | \( 1 + (0.809 + 0.587i)T \) |
| 37 | \( 1 + (-0.309 + 0.951i)T \) |
| 41 | \( 1 + (0.309 - 0.951i)T \) |
| 43 | \( 1 + T \) |
| 47 | \( 1 + (-0.809 + 0.587i)T \) |
| 53 | \( 1 + (0.809 - 0.587i)T \) |
| 59 | \( 1 + (0.309 - 0.951i)T \) |
| 61 | \( 1 + (0.309 + 0.951i)T \) |
| 67 | \( 1 + (-0.809 - 0.587i)T \) |
| 71 | \( 1 + (0.809 - 0.587i)T \) |
| 73 | \( 1 + (-0.309 - 0.951i)T \) |
| 79 | \( 1 + (-0.809 + 0.587i)T \) |
| 83 | \( 1 + (-0.809 - 0.587i)T \) |
| 89 | \( 1 + (-0.309 - 0.951i)T \) |
| 97 | \( 1 + (-0.809 + 0.587i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.56146073143664870725468997232, −17.889260250113233556733956676987, −17.03866029039236896040942060359, −16.241017422134003305878495696734, −15.77378145676816014237170008624, −15.28445493499621835716728341150, −14.47032715375330555070528155240, −13.80099185018856749130558205530, −13.174010858319096826588069928464, −12.62762679344735715507452744955, −11.69114857023196074053463142862, −10.8861746383273041064572986544, −10.10785563792958822268910873984, −9.62877668347820604569053247358, −8.98695900840218339986270113972, −8.4071824234611886325683906249, −7.357502811990383398426638059590, −6.905480003148905028747700725556, −6.03935556944239877981999645965, −5.02785169181040999571134002031, −4.28405464468789475025634597879, −3.794666608485799683331732273578, −2.74731005632764494473518451696, −2.34448952694253112345215953203, −1.255039371505690213705655186517,
0.4265544088581262349774784308, 1.172316443299413673587544144, 2.39416391399447661443043992872, 3.06417806622975695510333467921, 3.41953334349099682608327288015, 4.453046049849098906326847097597, 5.58541415048230112546751204322, 6.18850043109457086856772495337, 6.88135341664716974823365072997, 7.62931732839142645316305444207, 8.38189178136495596207212766028, 8.83727373306187078607507521698, 9.75391686025015874258681796237, 10.229256452536345455835151480247, 11.17984892659982560520749203748, 12.049651374165507916262493800831, 12.612929898780906239551716576, 13.47520792373958190703972205566, 13.62923558280958155121208978589, 14.39288334592115018280349889140, 15.479517032708147609461530220309, 15.73959000038920910340213562445, 16.40124006031976253104136193126, 17.47338674142269688690890984673, 18.042163658558935109523903510787