L(s) = 1 | + (0.309 + 0.951i)3-s + 7-s + (−0.809 + 0.587i)9-s + (0.809 + 0.587i)11-s + (0.809 − 0.587i)13-s + (−0.309 + 0.951i)17-s + (−0.309 + 0.951i)19-s + (0.309 + 0.951i)21-s + (−0.809 − 0.587i)27-s + (−0.309 − 0.951i)29-s + (−0.309 + 0.951i)31-s + (−0.309 + 0.951i)33-s + (−0.809 + 0.587i)37-s + (0.809 + 0.587i)39-s + (−0.809 + 0.587i)41-s + ⋯ |
L(s) = 1 | + (0.309 + 0.951i)3-s + 7-s + (−0.809 + 0.587i)9-s + (0.809 + 0.587i)11-s + (0.809 − 0.587i)13-s + (−0.309 + 0.951i)17-s + (−0.309 + 0.951i)19-s + (0.309 + 0.951i)21-s + (−0.809 − 0.587i)27-s + (−0.309 − 0.951i)29-s + (−0.309 + 0.951i)31-s + (−0.309 + 0.951i)33-s + (−0.809 + 0.587i)37-s + (0.809 + 0.587i)39-s + (−0.809 + 0.587i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4600 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.929 + 0.368i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4600 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.929 + 0.368i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3246759314 + 1.702010836i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3246759314 + 1.702010836i\) |
\(L(1)\) |
\(\approx\) |
\(1.073457023 + 0.6052934367i\) |
\(L(1)\) |
\(\approx\) |
\(1.073457023 + 0.6052934367i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 23 | \( 1 \) |
good | 3 | \( 1 + (0.309 + 0.951i)T \) |
| 7 | \( 1 + T \) |
| 11 | \( 1 + (0.809 + 0.587i)T \) |
| 13 | \( 1 + (0.809 - 0.587i)T \) |
| 17 | \( 1 + (-0.309 + 0.951i)T \) |
| 19 | \( 1 + (-0.309 + 0.951i)T \) |
| 29 | \( 1 + (-0.309 - 0.951i)T \) |
| 31 | \( 1 + (-0.309 + 0.951i)T \) |
| 37 | \( 1 + (-0.809 + 0.587i)T \) |
| 41 | \( 1 + (-0.809 + 0.587i)T \) |
| 43 | \( 1 - T \) |
| 47 | \( 1 + (-0.309 - 0.951i)T \) |
| 53 | \( 1 + (0.309 + 0.951i)T \) |
| 59 | \( 1 + (-0.809 + 0.587i)T \) |
| 61 | \( 1 + (-0.809 - 0.587i)T \) |
| 67 | \( 1 + (-0.309 + 0.951i)T \) |
| 71 | \( 1 + (-0.309 - 0.951i)T \) |
| 73 | \( 1 + (-0.809 - 0.587i)T \) |
| 79 | \( 1 + (0.309 + 0.951i)T \) |
| 83 | \( 1 + (-0.309 + 0.951i)T \) |
| 89 | \( 1 + (0.809 + 0.587i)T \) |
| 97 | \( 1 + (-0.309 - 0.951i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.90615237600800090883484399094, −17.45185263988355894311275250199, −16.69288907647790376144532568869, −15.95601616193219239130647055625, −14.97871947266778867346948115929, −14.49327643133122778877909344177, −13.67883912337481792032208197811, −13.52203129446148114392669332329, −12.49920277225532519516717999517, −11.65460815580777702914853679103, −11.37729838092373073684773212203, −10.722081210461514693444362382185, −9.36189019392420618586366075585, −8.85628682999939414949167068728, −8.41546808992287686563103137463, −7.46587126093402221440931577930, −6.91916949759320037733330442973, −6.25104570735537055608905747016, −5.418340605410148153565558653232, −4.58429037007480099892476200065, −3.68728800873879514327916125405, −2.91874623597853383475426370420, −1.890973348634173461238009355709, −1.45882801905262441540463361643, −0.41106642680128340481114749178,
1.44135777338784647250136721946, 1.880197267142489503144718203391, 3.09352777776290829674933838069, 3.835506330495118567849269147421, 4.35021232728814483684412600877, 5.142943495371940674098555156822, 5.864839185876042171158400619504, 6.65113641500047695235553749378, 7.76179843689039641745292829781, 8.36658391002362025801143391746, 8.78131664188412177481623596307, 9.70025856071307381426757546675, 10.46344614012608068961662927081, 10.79678713972090966667579584186, 11.73126499989016398457856995326, 12.215718932096972949621010132635, 13.34608658374331006530621110706, 13.88330873124138714203903620759, 14.763133369617808848406962430865, 15.04051253260434336099160696273, 15.609434203974044527014393750916, 16.671583447322224653121233868531, 17.00546150245436498928695623356, 17.74151334930505014986114697308, 18.421642372212644163109048449540