L(s) = 1 | + (0.309 − 0.951i)3-s + 7-s + (−0.809 − 0.587i)9-s + (0.809 − 0.587i)11-s + (0.809 + 0.587i)13-s + (−0.309 − 0.951i)17-s + (−0.309 − 0.951i)19-s + (0.309 − 0.951i)21-s + (−0.809 + 0.587i)27-s + (−0.309 + 0.951i)29-s + (−0.309 − 0.951i)31-s + (−0.309 − 0.951i)33-s + (−0.809 − 0.587i)37-s + (0.809 − 0.587i)39-s + (−0.809 − 0.587i)41-s + ⋯ |
L(s) = 1 | + (0.309 − 0.951i)3-s + 7-s + (−0.809 − 0.587i)9-s + (0.809 − 0.587i)11-s + (0.809 + 0.587i)13-s + (−0.309 − 0.951i)17-s + (−0.309 − 0.951i)19-s + (0.309 − 0.951i)21-s + (−0.809 + 0.587i)27-s + (−0.309 + 0.951i)29-s + (−0.309 − 0.951i)31-s + (−0.309 − 0.951i)33-s + (−0.809 − 0.587i)37-s + (0.809 − 0.587i)39-s + (−0.809 − 0.587i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4600 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.929 - 0.368i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4600 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.929 - 0.368i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3246759314 - 1.702010836i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3246759314 - 1.702010836i\) |
\(L(1)\) |
\(\approx\) |
\(1.073457023 - 0.6052934367i\) |
\(L(1)\) |
\(\approx\) |
\(1.073457023 - 0.6052934367i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 23 | \( 1 \) |
good | 3 | \( 1 + (0.309 - 0.951i)T \) |
| 7 | \( 1 + T \) |
| 11 | \( 1 + (0.809 - 0.587i)T \) |
| 13 | \( 1 + (0.809 + 0.587i)T \) |
| 17 | \( 1 + (-0.309 - 0.951i)T \) |
| 19 | \( 1 + (-0.309 - 0.951i)T \) |
| 29 | \( 1 + (-0.309 + 0.951i)T \) |
| 31 | \( 1 + (-0.309 - 0.951i)T \) |
| 37 | \( 1 + (-0.809 - 0.587i)T \) |
| 41 | \( 1 + (-0.809 - 0.587i)T \) |
| 43 | \( 1 - T \) |
| 47 | \( 1 + (-0.309 + 0.951i)T \) |
| 53 | \( 1 + (0.309 - 0.951i)T \) |
| 59 | \( 1 + (-0.809 - 0.587i)T \) |
| 61 | \( 1 + (-0.809 + 0.587i)T \) |
| 67 | \( 1 + (-0.309 - 0.951i)T \) |
| 71 | \( 1 + (-0.309 + 0.951i)T \) |
| 73 | \( 1 + (-0.809 + 0.587i)T \) |
| 79 | \( 1 + (0.309 - 0.951i)T \) |
| 83 | \( 1 + (-0.309 - 0.951i)T \) |
| 89 | \( 1 + (0.809 - 0.587i)T \) |
| 97 | \( 1 + (-0.309 + 0.951i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.421642372212644163109048449540, −17.74151334930505014986114697308, −17.00546150245436498928695623356, −16.671583447322224653121233868531, −15.609434203974044527014393750916, −15.04051253260434336099160696273, −14.763133369617808848406962430865, −13.88330873124138714203903620759, −13.34608658374331006530621110706, −12.215718932096972949621010132635, −11.73126499989016398457856995326, −10.79678713972090966667579584186, −10.46344614012608068961662927081, −9.70025856071307381426757546675, −8.78131664188412177481623596307, −8.36658391002362025801143391746, −7.76179843689039641745292829781, −6.65113641500047695235553749378, −5.864839185876042171158400619504, −5.142943495371940674098555156822, −4.35021232728814483684412600877, −3.835506330495118567849269147421, −3.09352777776290829674933838069, −1.880197267142489503144718203391, −1.44135777338784647250136721946,
0.41106642680128340481114749178, 1.45882801905262441540463361643, 1.890973348634173461238009355709, 2.91874623597853383475426370420, 3.68728800873879514327916125405, 4.58429037007480099892476200065, 5.418340605410148153565558653232, 6.25104570735537055608905747016, 6.91916949759320037733330442973, 7.46587126093402221440931577930, 8.41546808992287686563103137463, 8.85628682999939414949167068728, 9.36189019392420618586366075585, 10.722081210461514693444362382185, 11.37729838092373073684773212203, 11.65460815580777702914853679103, 12.49920277225532519516717999517, 13.52203129446148114392669332329, 13.67883912337481792032208197811, 14.49327643133122778877909344177, 14.97871947266778867346948115929, 15.95601616193219239130647055625, 16.69288907647790376144532568869, 17.45185263988355894311275250199, 17.90615237600800090883484399094