L(s) = 1 | + (−0.809 − 0.587i)3-s + 7-s + (0.309 + 0.951i)9-s + (−0.309 + 0.951i)11-s + (−0.309 − 0.951i)13-s + (0.809 − 0.587i)17-s + (0.809 − 0.587i)19-s + (−0.809 − 0.587i)21-s + (0.309 − 0.951i)27-s + (0.809 + 0.587i)29-s + (0.809 − 0.587i)31-s + (0.809 − 0.587i)33-s + (0.309 + 0.951i)37-s + (−0.309 + 0.951i)39-s + (0.309 + 0.951i)41-s + ⋯ |
L(s) = 1 | + (−0.809 − 0.587i)3-s + 7-s + (0.309 + 0.951i)9-s + (−0.309 + 0.951i)11-s + (−0.309 − 0.951i)13-s + (0.809 − 0.587i)17-s + (0.809 − 0.587i)19-s + (−0.809 − 0.587i)21-s + (0.309 − 0.951i)27-s + (0.809 + 0.587i)29-s + (0.809 − 0.587i)31-s + (0.809 − 0.587i)33-s + (0.309 + 0.951i)37-s + (−0.309 + 0.951i)39-s + (0.309 + 0.951i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4600 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.876 - 0.481i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4600 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.876 - 0.481i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.587359178 - 0.4075645653i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.587359178 - 0.4075645653i\) |
\(L(1)\) |
\(\approx\) |
\(0.9963390063 - 0.1640116573i\) |
\(L(1)\) |
\(\approx\) |
\(0.9963390063 - 0.1640116573i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 23 | \( 1 \) |
good | 3 | \( 1 + (-0.809 - 0.587i)T \) |
| 7 | \( 1 + T \) |
| 11 | \( 1 + (-0.309 + 0.951i)T \) |
| 13 | \( 1 + (-0.309 - 0.951i)T \) |
| 17 | \( 1 + (0.809 - 0.587i)T \) |
| 19 | \( 1 + (0.809 - 0.587i)T \) |
| 29 | \( 1 + (0.809 + 0.587i)T \) |
| 31 | \( 1 + (0.809 - 0.587i)T \) |
| 37 | \( 1 + (0.309 + 0.951i)T \) |
| 41 | \( 1 + (0.309 + 0.951i)T \) |
| 43 | \( 1 - T \) |
| 47 | \( 1 + (0.809 + 0.587i)T \) |
| 53 | \( 1 + (-0.809 - 0.587i)T \) |
| 59 | \( 1 + (0.309 + 0.951i)T \) |
| 61 | \( 1 + (0.309 - 0.951i)T \) |
| 67 | \( 1 + (0.809 - 0.587i)T \) |
| 71 | \( 1 + (0.809 + 0.587i)T \) |
| 73 | \( 1 + (0.309 - 0.951i)T \) |
| 79 | \( 1 + (-0.809 - 0.587i)T \) |
| 83 | \( 1 + (0.809 - 0.587i)T \) |
| 89 | \( 1 + (-0.309 + 0.951i)T \) |
| 97 | \( 1 + (0.809 + 0.587i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.285169675303739639519117437699, −17.34408005845142384350173196837, −17.05577127581709659862502291292, −16.21610359816458862212865845716, −15.79637435231802054004247991715, −14.92747556543686852987473494629, −14.17597368658184880359371677262, −13.856663457696752081268501743060, −12.61765015940614818656424683574, −11.96732867702191504731158076678, −11.525709176371961019624785806817, −10.8140084742513129249226450727, −10.21736570178294973954830177487, −9.52147648836034123419557834356, −8.6283843650711450247802492888, −8.03785678417752470796748061266, −7.158581167838714054458484628930, −6.32394370372651264564434727737, −5.54211447506645503399015030832, −5.13901151535956772323755515712, −4.20566164685671479477313866480, −3.6737436400312749768599262736, −2.61830389950662045299727865698, −1.51425507054971130615111704803, −0.77078331001861965295540748112,
0.763507857430023898138635873313, 1.38026882451501608799832618891, 2.38039038364422929108222872365, 3.060041573389656433080263764827, 4.45413700717584093732917447955, 5.03147808557932291874506946911, 5.3753631369736677231551047737, 6.42956578998079462257874082420, 7.12898256704451679687359260691, 7.93786534706888520512242466392, 8.0500961183774898014075334983, 9.45358109715576804706610924172, 10.09873342892800011007065329357, 10.73705731459814147217488180972, 11.55948879558334936442688303813, 11.98340370526584601920618396022, 12.64882568198315089140097700933, 13.376851383046980821335821519349, 14.04485205090531689526504168860, 14.84258369154214498519040443222, 15.496332300296200332863107381989, 16.19895929998827376764005702727, 17.081077120722064809358761091686, 17.54747016166907517770657576596, 18.10473308570104906071371736419