L(s) = 1 | + (−0.909 − 0.415i)3-s + (−0.540 − 0.841i)7-s + (0.654 + 0.755i)9-s + (−0.142 + 0.989i)11-s + (−0.540 + 0.841i)13-s + (0.281 − 0.959i)17-s + (0.959 − 0.281i)19-s + (0.142 + 0.989i)21-s + (−0.281 − 0.959i)27-s + (0.959 + 0.281i)29-s + (−0.415 − 0.909i)31-s + (0.540 − 0.841i)33-s + (0.755 − 0.654i)37-s + (0.841 − 0.540i)39-s + (−0.654 + 0.755i)41-s + ⋯ |
L(s) = 1 | + (−0.909 − 0.415i)3-s + (−0.540 − 0.841i)7-s + (0.654 + 0.755i)9-s + (−0.142 + 0.989i)11-s + (−0.540 + 0.841i)13-s + (0.281 − 0.959i)17-s + (0.959 − 0.281i)19-s + (0.142 + 0.989i)21-s + (−0.281 − 0.959i)27-s + (0.959 + 0.281i)29-s + (−0.415 − 0.909i)31-s + (0.540 − 0.841i)33-s + (0.755 − 0.654i)37-s + (0.841 − 0.540i)39-s + (−0.654 + 0.755i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 460 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.845 - 0.534i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 460 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.845 - 0.534i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1550994608 - 0.5355181270i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1550994608 - 0.5355181270i\) |
\(L(1)\) |
\(\approx\) |
\(0.6760477637 - 0.1477704977i\) |
\(L(1)\) |
\(\approx\) |
\(0.6760477637 - 0.1477704977i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 23 | \( 1 \) |
good | 3 | \( 1 + (-0.909 - 0.415i)T \) |
| 7 | \( 1 + (-0.540 - 0.841i)T \) |
| 11 | \( 1 + (-0.142 + 0.989i)T \) |
| 13 | \( 1 + (-0.540 + 0.841i)T \) |
| 17 | \( 1 + (0.281 - 0.959i)T \) |
| 19 | \( 1 + (0.959 - 0.281i)T \) |
| 29 | \( 1 + (0.959 + 0.281i)T \) |
| 31 | \( 1 + (-0.415 - 0.909i)T \) |
| 37 | \( 1 + (0.755 - 0.654i)T \) |
| 41 | \( 1 + (-0.654 + 0.755i)T \) |
| 43 | \( 1 + (0.909 + 0.415i)T \) |
| 47 | \( 1 - iT \) |
| 53 | \( 1 + (-0.540 - 0.841i)T \) |
| 59 | \( 1 + (0.841 + 0.540i)T \) |
| 61 | \( 1 + (-0.415 - 0.909i)T \) |
| 67 | \( 1 + (-0.989 + 0.142i)T \) |
| 71 | \( 1 + (0.142 + 0.989i)T \) |
| 73 | \( 1 + (-0.281 - 0.959i)T \) |
| 79 | \( 1 + (-0.841 - 0.540i)T \) |
| 83 | \( 1 + (0.755 - 0.654i)T \) |
| 89 | \( 1 + (0.415 - 0.909i)T \) |
| 97 | \( 1 + (-0.755 - 0.654i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.983127323742744133961352446286, −23.119323353102165380120340214218, −22.13661602787296161703952972530, −21.83503144577058210243312954901, −20.88307155251530115446975194757, −19.70852399547846019453917176004, −18.80091019054474941991487922870, −18.02197468793227750094279446061, −17.11981783587886046465482635092, −16.233549000328078164999658080374, −15.60377150155287124142418564584, −14.746268668281873019603127490209, −13.45085954375563415095324283319, −12.40273108929526726773568670992, −11.90820031343521720672768766675, −10.72453415422089511824748437368, −10.06369640902703393989963046644, −9.04092731063096147541744606482, −7.98949062682305906084456780477, −6.65295093484825347552552788826, −5.734681594217715244767715595453, −5.217305227324681926599779220223, −3.75040119963651939432218859500, −2.81730136189657022583207143144, −1.06139213786916361823798998162,
0.20055255589019277648418379954, 1.364627009852720628096263854879, 2.71862646495628510204002386702, 4.28406496622277885588290141859, 4.988393173057791698659395290976, 6.24998447791650095358910770032, 7.177927198329909129002961687695, 7.59970069610019008917883943912, 9.4634002766960694270292426463, 9.990137402426295774734791889432, 11.13517195136538718407540853118, 11.92376610556755894358724996125, 12.77440215719210956961534354240, 13.61865568195840739040500375696, 14.53689611262881950319948424736, 15.96362669521735129690429637710, 16.42497822404875035581983426351, 17.40493715417093782124839374997, 18.0511619406766457752555223922, 19.02634036582825492951640886624, 19.88669906267951158620545503085, 20.75128495546597872955020299558, 21.93778424043099223900443224356, 22.64463729872529609224995801664, 23.30616535898399534416253690341