L(s) = 1 | + (0.173 − 0.984i)5-s + (−0.5 − 0.866i)7-s + (−0.5 + 0.866i)11-s + (−0.939 − 0.342i)13-s + (−0.766 − 0.642i)17-s + (−0.173 − 0.984i)23-s + (−0.939 − 0.342i)25-s + (−0.766 + 0.642i)29-s + (0.5 + 0.866i)31-s + (−0.939 + 0.342i)35-s + 37-s + (−0.939 + 0.342i)41-s + (−0.173 + 0.984i)43-s + (−0.766 + 0.642i)47-s + (−0.5 + 0.866i)49-s + ⋯ |
L(s) = 1 | + (0.173 − 0.984i)5-s + (−0.5 − 0.866i)7-s + (−0.5 + 0.866i)11-s + (−0.939 − 0.342i)13-s + (−0.766 − 0.642i)17-s + (−0.173 − 0.984i)23-s + (−0.939 − 0.342i)25-s + (−0.766 + 0.642i)29-s + (0.5 + 0.866i)31-s + (−0.939 + 0.342i)35-s + 37-s + (−0.939 + 0.342i)41-s + (−0.173 + 0.984i)43-s + (−0.766 + 0.642i)47-s + (−0.5 + 0.866i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 456 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.973 - 0.226i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 456 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.973 - 0.226i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.06011660039 - 0.5235260987i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.06011660039 - 0.5235260987i\) |
\(L(1)\) |
\(\approx\) |
\(0.7188510925 - 0.2774825934i\) |
\(L(1)\) |
\(\approx\) |
\(0.7188510925 - 0.2774825934i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 19 | \( 1 \) |
good | 5 | \( 1 + (0.173 - 0.984i)T \) |
| 7 | \( 1 + (-0.5 - 0.866i)T \) |
| 11 | \( 1 + (-0.5 + 0.866i)T \) |
| 13 | \( 1 + (-0.939 - 0.342i)T \) |
| 17 | \( 1 + (-0.766 - 0.642i)T \) |
| 23 | \( 1 + (-0.173 - 0.984i)T \) |
| 29 | \( 1 + (-0.766 + 0.642i)T \) |
| 31 | \( 1 + (0.5 + 0.866i)T \) |
| 37 | \( 1 + T \) |
| 41 | \( 1 + (-0.939 + 0.342i)T \) |
| 43 | \( 1 + (-0.173 + 0.984i)T \) |
| 47 | \( 1 + (-0.766 + 0.642i)T \) |
| 53 | \( 1 + (-0.173 - 0.984i)T \) |
| 59 | \( 1 + (-0.766 - 0.642i)T \) |
| 61 | \( 1 + (-0.173 - 0.984i)T \) |
| 67 | \( 1 + (0.766 - 0.642i)T \) |
| 71 | \( 1 + (0.173 - 0.984i)T \) |
| 73 | \( 1 + (-0.939 + 0.342i)T \) |
| 79 | \( 1 + (0.939 - 0.342i)T \) |
| 83 | \( 1 + (-0.5 - 0.866i)T \) |
| 89 | \( 1 + (-0.939 - 0.342i)T \) |
| 97 | \( 1 + (-0.766 - 0.642i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.36399043333702703516862393025, −23.50878325206296156365455845713, −22.36216455576760940491528157990, −21.90180417588376644767086206658, −21.267781378689205470848682081662, −19.85363641782896513423915706051, −19.03641863222128540174747612923, −18.557642646229528254792325489930, −17.535877009398847330287751272424, −16.60917690308417223766593067477, −15.37523977246358529155886387709, −15.07639449502543606017547974039, −13.816922190295653379275824077519, −13.13055851957158110090003135439, −11.89994716598156020865809714132, −11.19654358218078494626883836986, −10.126767845825832800745828938206, −9.3525297369149591027603497982, −8.23002629702341107729897444471, −7.17229723014945255085957492396, −6.17092247177696927904129434895, −5.47974098856205841769742922769, −3.94667805157283801104370288732, −2.83793293464034462510844161606, −2.0953733309391712196740967881,
0.27049707862006937136302048923, 1.77706143296603940165383149807, 3.04275298411386329546709464410, 4.54641309493092923267566084957, 4.92688240789689399178747253223, 6.40928955191955627289837846876, 7.35165937897044632679384562480, 8.2725590920312038389074171949, 9.51271210384495400616705295777, 10.00576525233710624489135900696, 11.15831741941474141636955047769, 12.48094947012380367032690854446, 12.86732754672045855823998402499, 13.82520989372269019249237622755, 14.879797043189294875287129436203, 15.950105548263188261348500767186, 16.63427495658278000681222818171, 17.45240127936832029166681520129, 18.2294366449251748811539946918, 19.61982458719083539289452333764, 20.16632005783417451825704539018, 20.73323181499762306419826955170, 21.90976070056646615448715454020, 22.779100656332219885603806978344, 23.554719997864379499733744522062