L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.5 − 0.866i)4-s + (0.5 − 0.866i)7-s − 8-s + (−0.5 + 0.866i)11-s + (0.5 + 0.866i)13-s + (−0.5 − 0.866i)14-s + (−0.5 + 0.866i)16-s − 17-s + 19-s + (0.5 + 0.866i)22-s + (0.5 + 0.866i)23-s + 26-s − 28-s + (−0.5 + 0.866i)29-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.5 − 0.866i)4-s + (0.5 − 0.866i)7-s − 8-s + (−0.5 + 0.866i)11-s + (0.5 + 0.866i)13-s + (−0.5 − 0.866i)14-s + (−0.5 + 0.866i)16-s − 17-s + 19-s + (0.5 + 0.866i)22-s + (0.5 + 0.866i)23-s + 26-s − 28-s + (−0.5 + 0.866i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.173 - 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.173 - 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7698993003 - 0.6460222189i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7698993003 - 0.6460222189i\) |
\(L(1)\) |
\(\approx\) |
\(1.017581897 - 0.5750616325i\) |
\(L(1)\) |
\(\approx\) |
\(1.017581897 - 0.5750616325i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + (0.5 - 0.866i)T \) |
| 7 | \( 1 + (0.5 - 0.866i)T \) |
| 11 | \( 1 + (-0.5 + 0.866i)T \) |
| 13 | \( 1 + (0.5 + 0.866i)T \) |
| 17 | \( 1 - T \) |
| 19 | \( 1 + T \) |
| 23 | \( 1 + (0.5 + 0.866i)T \) |
| 29 | \( 1 + (-0.5 + 0.866i)T \) |
| 31 | \( 1 + (-0.5 - 0.866i)T \) |
| 37 | \( 1 - T \) |
| 41 | \( 1 + (-0.5 - 0.866i)T \) |
| 43 | \( 1 + (0.5 - 0.866i)T \) |
| 47 | \( 1 + (0.5 - 0.866i)T \) |
| 53 | \( 1 - T \) |
| 59 | \( 1 + (-0.5 - 0.866i)T \) |
| 61 | \( 1 + (-0.5 + 0.866i)T \) |
| 67 | \( 1 + (0.5 + 0.866i)T \) |
| 71 | \( 1 + T \) |
| 73 | \( 1 - T \) |
| 79 | \( 1 + (-0.5 + 0.866i)T \) |
| 83 | \( 1 + (0.5 - 0.866i)T \) |
| 89 | \( 1 + T \) |
| 97 | \( 1 + (0.5 - 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−34.6407752538296581875675095088, −33.45017423453234422579422601726, −32.34815851101980637749458547809, −31.28019394667002352521629623836, −30.40169614290229086472191382603, −28.76973431101492980994027655010, −27.323149853576368594941849747822, −26.292789499238961684723885885414, −24.89906916403401597878017476639, −24.26111227348730409067430609118, −22.81647949664846069167383640733, −21.78380647276188230474172592563, −20.64500112815866818819262540216, −18.595454476190985320021057180235, −17.663685799203339890063230028939, −16.086899998376124901253161876223, −15.223538835595963485719999274803, −13.85689829113214396106696827719, −12.65410094964942889104495091245, −11.157388556562852776233813918069, −8.94674731380379868426180375490, −7.90112655391428801320618356990, −6.129883513417807024140256986869, −4.986080434395568954318652182475, −3.036966339852487507043603700014,
1.79552054022879431760879518606, 3.82246261151636447130164381576, 5.12318840361089192244794614766, 7.13391008819698984650180343164, 9.164117984764452576349564931991, 10.5720086863329850717008945500, 11.62991026140771176012653565518, 13.16345457638311621835241422061, 14.12768025380590189428613636865, 15.54684695455579445900125710702, 17.42732327354157056402994216485, 18.61117112335464692242434707410, 20.09918331143247803638648325371, 20.7941643938762227796889730662, 22.16099686270101297940073783120, 23.370601086317253676682092149431, 24.20305329339874632344423794230, 26.10599953904193255973805087584, 27.304690595780937403189399033935, 28.51586223071429141720772834289, 29.476846827760444864649099007665, 30.77918517993744363590499976324, 31.33888421974699914084788635818, 33.125777829606636990567130411103, 33.468385069609883259802732782051