L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.5 + 0.866i)4-s + (0.5 + 0.866i)7-s + 8-s + (0.5 + 0.866i)11-s + (0.5 − 0.866i)13-s + (0.5 − 0.866i)14-s + (−0.5 − 0.866i)16-s + 17-s + 19-s + (0.5 − 0.866i)22-s + (−0.5 + 0.866i)23-s − 26-s − 28-s + (0.5 + 0.866i)29-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.5 + 0.866i)4-s + (0.5 + 0.866i)7-s + 8-s + (0.5 + 0.866i)11-s + (0.5 − 0.866i)13-s + (0.5 − 0.866i)14-s + (−0.5 − 0.866i)16-s + 17-s + 19-s + (0.5 − 0.866i)22-s + (−0.5 + 0.866i)23-s − 26-s − 28-s + (0.5 + 0.866i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.984 - 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.984 - 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.206579964 - 0.1055620685i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.206579964 - 0.1055620685i\) |
\(L(1)\) |
\(\approx\) |
\(0.9224122680 - 0.1626461701i\) |
\(L(1)\) |
\(\approx\) |
\(0.9224122680 - 0.1626461701i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 7 | \( 1 + (0.5 + 0.866i)T \) |
| 11 | \( 1 + (0.5 + 0.866i)T \) |
| 13 | \( 1 + (0.5 - 0.866i)T \) |
| 17 | \( 1 + T \) |
| 19 | \( 1 + T \) |
| 23 | \( 1 + (-0.5 + 0.866i)T \) |
| 29 | \( 1 + (0.5 + 0.866i)T \) |
| 31 | \( 1 + (-0.5 + 0.866i)T \) |
| 37 | \( 1 - T \) |
| 41 | \( 1 + (0.5 - 0.866i)T \) |
| 43 | \( 1 + (0.5 + 0.866i)T \) |
| 47 | \( 1 + (-0.5 - 0.866i)T \) |
| 53 | \( 1 + T \) |
| 59 | \( 1 + (0.5 - 0.866i)T \) |
| 61 | \( 1 + (-0.5 - 0.866i)T \) |
| 67 | \( 1 + (0.5 - 0.866i)T \) |
| 71 | \( 1 - T \) |
| 73 | \( 1 - T \) |
| 79 | \( 1 + (-0.5 - 0.866i)T \) |
| 83 | \( 1 + (-0.5 - 0.866i)T \) |
| 89 | \( 1 - T \) |
| 97 | \( 1 + (0.5 + 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−34.09354844432550190639116750119, −33.096614944814669778618110813928, −32.169502865313291286750099835899, −30.685499806272144250845357844342, −29.29842349904856612876547413058, −27.960650724316858179136570486586, −26.881607302044681586248722288725, −26.062727534599654330717055294747, −24.58099736284453522983527464648, −23.78929074870833939877883357147, −22.56747582479688063158985794977, −20.873706800250642307277526773646, −19.41763203336929951676347582497, −18.29335636989591916245291879947, −16.93965815091351875558743929500, −16.15735221060706352418911039008, −14.426178629447459084940200036191, −13.71176218491971948402683198965, −11.44543758704392776439917913229, −10.04172275714930063405894550472, −8.57948695826822989436992851989, −7.3181106414903039163295544906, −5.88676066227881484131819960130, −4.147606581579310469065204414760, −1.067351993257728218488609668356,
1.54474594651549325427733735412, 3.330298957431496527835844980089, 5.24499814264478250614496320864, 7.58742421616382402395643119103, 8.919514238728154640911584339105, 10.19123787481185370580701801517, 11.68483267851063612348286288548, 12.58558247617182811327977389699, 14.26802439262418854060186318201, 15.88705110834848360153635660097, 17.57346243938264112789622021261, 18.310427350710028233853591129309, 19.71887573843978783522119987479, 20.79013162927799356246445393484, 21.91774727990832234613887797398, 23.05808537763083650546840655941, 24.94602908369519069118581505012, 25.87797159072455967631067350577, 27.56947017759310200020462943649, 27.94554490147556513983343776205, 29.35050010777095582773298479366, 30.528876205286991057218563581165, 31.30280267583153958988684296616, 32.745843343968825180805275378941, 34.381399504681706271077370772116