L(s) = 1 | + (−0.866 − 0.5i)2-s + (0.5 + 0.866i)4-s + (0.866 + 0.5i)7-s − i·8-s + (0.5 − 0.866i)11-s + (0.866 − 0.5i)13-s + (−0.5 − 0.866i)14-s + (−0.5 + 0.866i)16-s + i·17-s − 19-s + (−0.866 + 0.5i)22-s + (−0.866 + 0.5i)23-s − 26-s + i·28-s + (−0.5 + 0.866i)29-s + ⋯ |
L(s) = 1 | + (−0.866 − 0.5i)2-s + (0.5 + 0.866i)4-s + (0.866 + 0.5i)7-s − i·8-s + (0.5 − 0.866i)11-s + (0.866 − 0.5i)13-s + (−0.5 − 0.866i)14-s + (−0.5 + 0.866i)16-s + i·17-s − 19-s + (−0.866 + 0.5i)22-s + (−0.866 + 0.5i)23-s − 26-s + i·28-s + (−0.5 + 0.866i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.929 - 0.370i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.929 - 0.370i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6186750856 - 0.1186760323i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6186750856 - 0.1186760323i\) |
\(L(1)\) |
\(\approx\) |
\(0.7440027170 - 0.1180152635i\) |
\(L(1)\) |
\(\approx\) |
\(0.7440027170 - 0.1180152635i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + (-0.866 - 0.5i)T \) |
| 7 | \( 1 + (0.866 + 0.5i)T \) |
| 11 | \( 1 + (0.5 - 0.866i)T \) |
| 13 | \( 1 + (0.866 - 0.5i)T \) |
| 17 | \( 1 + iT \) |
| 19 | \( 1 - T \) |
| 23 | \( 1 + (-0.866 + 0.5i)T \) |
| 29 | \( 1 + (-0.5 + 0.866i)T \) |
| 31 | \( 1 + (-0.5 - 0.866i)T \) |
| 37 | \( 1 - iT \) |
| 41 | \( 1 + (0.5 + 0.866i)T \) |
| 43 | \( 1 + (-0.866 - 0.5i)T \) |
| 47 | \( 1 + (-0.866 - 0.5i)T \) |
| 53 | \( 1 - iT \) |
| 59 | \( 1 + (-0.5 - 0.866i)T \) |
| 61 | \( 1 + (-0.5 + 0.866i)T \) |
| 67 | \( 1 + (-0.866 + 0.5i)T \) |
| 71 | \( 1 - T \) |
| 73 | \( 1 + iT \) |
| 79 | \( 1 + (0.5 - 0.866i)T \) |
| 83 | \( 1 + (0.866 + 0.5i)T \) |
| 89 | \( 1 + T \) |
| 97 | \( 1 + (0.866 + 0.5i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−34.27319596443480332218445129009, −33.5627824516012812434326858147, −32.50116374330450786624458952740, −30.80609585445922773383117873663, −29.65893824571317793003524846613, −28.21848491514406267014544797250, −27.44603780745807575770257362501, −26.245563648684268132081691340665, −25.169759660374015048257708100377, −23.99866204216137566852635920107, −22.957280520520294536518072905453, −20.94589780967766167649156688144, −19.99348626087132115415923380481, −18.52301522851174264287221231315, −17.5345942325096034319351793937, −16.417230031553354474935915367, −15.01253481041527087360323726737, −13.909287013660276397081441892307, −11.73149830143295670844100560315, −10.507194128477480217418474459614, −9.07333274769736290563340464442, −7.7476119182222896718349891881, −6.448851107830590197365472259357, −4.578501693340769035221711208043, −1.73502892654605288461993531888,
1.75276955785323066086558323353, 3.71393660200290484575758359195, 6.06092527099599308369164858061, 8.01638507168060770541567812440, 8.8916162329185974858423703850, 10.64290908413794165123591939364, 11.58116042577649636338356502441, 13.040344954552693888755750638701, 14.869705467444748609823099402970, 16.34204058802709121944223434347, 17.5921211914564113937988371692, 18.61109460302128361749755597333, 19.79822850542316345509697109064, 21.116293649872633667062894048396, 21.94044422227897593488232921148, 23.89347784692159102147371808229, 25.11132232099705185782462287886, 26.22684287698595384304202209410, 27.606948248345891642137748355420, 28.10309283478446486624817585952, 29.69894652154906483824578189733, 30.446674166988685084712748527400, 31.75497866774752961726753609955, 33.38979987193827460187196568341, 34.62967785083970788898507180291