Properties

Label 1-45-45.22-r1-0-0
Degree $1$
Conductor $45$
Sign $-0.665 + 0.746i$
Analytic cond. $4.83592$
Root an. cond. $4.83592$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.866 − 0.5i)2-s + (0.5 + 0.866i)4-s + (−0.866 − 0.5i)7-s i·8-s + (−0.5 + 0.866i)11-s + (−0.866 + 0.5i)13-s + (0.5 + 0.866i)14-s + (−0.5 + 0.866i)16-s + i·17-s − 19-s + (0.866 − 0.5i)22-s + (−0.866 + 0.5i)23-s + 26-s i·28-s + (0.5 − 0.866i)29-s + ⋯
L(s)  = 1  + (−0.866 − 0.5i)2-s + (0.5 + 0.866i)4-s + (−0.866 − 0.5i)7-s i·8-s + (−0.5 + 0.866i)11-s + (−0.866 + 0.5i)13-s + (0.5 + 0.866i)14-s + (−0.5 + 0.866i)16-s + i·17-s − 19-s + (0.866 − 0.5i)22-s + (−0.866 + 0.5i)23-s + 26-s i·28-s + (0.5 − 0.866i)29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.665 + 0.746i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.665 + 0.746i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(45\)    =    \(3^{2} \cdot 5\)
Sign: $-0.665 + 0.746i$
Analytic conductor: \(4.83592\)
Root analytic conductor: \(4.83592\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{45} (22, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 45,\ (1:\ ),\ -0.665 + 0.746i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.07845651932 + 0.1750534138i\)
\(L(\frac12)\) \(\approx\) \(0.07845651932 + 0.1750534138i\)
\(L(1)\) \(\approx\) \(0.4840460907 + 0.02776180649i\)
\(L(1)\) \(\approx\) \(0.4840460907 + 0.02776180649i\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2 \( 1 + (-0.866 - 0.5i)T \)
7 \( 1 + (-0.866 - 0.5i)T \)
11 \( 1 + (-0.5 + 0.866i)T \)
13 \( 1 + (-0.866 + 0.5i)T \)
17 \( 1 + iT \)
19 \( 1 - T \)
23 \( 1 + (-0.866 + 0.5i)T \)
29 \( 1 + (0.5 - 0.866i)T \)
31 \( 1 + (-0.5 - 0.866i)T \)
37 \( 1 + iT \)
41 \( 1 + (-0.5 - 0.866i)T \)
43 \( 1 + (0.866 + 0.5i)T \)
47 \( 1 + (-0.866 - 0.5i)T \)
53 \( 1 - iT \)
59 \( 1 + (0.5 + 0.866i)T \)
61 \( 1 + (-0.5 + 0.866i)T \)
67 \( 1 + (0.866 - 0.5i)T \)
71 \( 1 + T \)
73 \( 1 - iT \)
79 \( 1 + (0.5 - 0.866i)T \)
83 \( 1 + (0.866 + 0.5i)T \)
89 \( 1 - T \)
97 \( 1 + (-0.866 - 0.5i)T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−34.06151056700494650772702719454, −32.465412585242615457893248284591, −31.75453362066903434375373047403, −29.66562785068075368286224428318, −28.93093951479350805661633250416, −27.64334081683377480495073950317, −26.59585467487252142232467659889, −25.47762892432451591033497171155, −24.51793521034089750397067975770, −23.206262398087601627528370319292, −21.7606620514005981723005607636, −20.07753674170606006718329670245, −19.04151011940460404357621385339, −17.998963101725770418656010512276, −16.521154234023988325928725958556, −15.681933987404926295541551153470, −14.25403148682456445864193835904, −12.48733080499591676669872992166, −10.78182061488903454498294851264, −9.53994252934195705096009894911, −8.27261626325058397475706752731, −6.74324671982229943913575667767, −5.39857089607537723104592654746, −2.670974370481482485253676789946, −0.14130967503481220922695250696, 2.19101918745459801575242198925, 4.032044497248041886005334707141, 6.60124187534404225208310724396, 7.90780778592658269364481350704, 9.58487706885013852619696386391, 10.436159584163931815994561229096, 12.105522055852805717440229925110, 13.18032560715474647607934810090, 15.22739345213525343768046309446, 16.632214765119503901068312226427, 17.57245308434466399562898595143, 19.083769072238352475164183530116, 19.87078748891966752377397858965, 21.175880296566698468686602201851, 22.427332458474392127167218756659, 23.94343793621385581750943992136, 25.652203151772568378219369107323, 26.20907046014930731722848414309, 27.58115119414771634982704375590, 28.69579349803326539059431930066, 29.584584025337479586650778906892, 30.74172481665584982337739576228, 32.07519662578403889431059635267, 33.597219127631391998114051153161, 34.655451582689289578842579421954

Graph of the $Z$-function along the critical line