L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.5 − 0.866i)4-s + (0.5 − 0.866i)7-s + 8-s + (0.5 − 0.866i)11-s + (0.5 + 0.866i)13-s + (0.5 + 0.866i)14-s + (−0.5 + 0.866i)16-s + 17-s + 19-s + (0.5 + 0.866i)22-s + (−0.5 − 0.866i)23-s − 26-s − 28-s + (0.5 − 0.866i)29-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.5 − 0.866i)4-s + (0.5 − 0.866i)7-s + 8-s + (0.5 − 0.866i)11-s + (0.5 + 0.866i)13-s + (0.5 + 0.866i)14-s + (−0.5 + 0.866i)16-s + 17-s + 19-s + (0.5 + 0.866i)22-s + (−0.5 − 0.866i)23-s − 26-s − 28-s + (0.5 − 0.866i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.984 + 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.984 + 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.206579964 + 0.1055620685i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.206579964 + 0.1055620685i\) |
\(L(1)\) |
\(\approx\) |
\(0.9224122680 + 0.1626461701i\) |
\(L(1)\) |
\(\approx\) |
\(0.9224122680 + 0.1626461701i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 7 | \( 1 + (0.5 - 0.866i)T \) |
| 11 | \( 1 + (0.5 - 0.866i)T \) |
| 13 | \( 1 + (0.5 + 0.866i)T \) |
| 17 | \( 1 + T \) |
| 19 | \( 1 + T \) |
| 23 | \( 1 + (-0.5 - 0.866i)T \) |
| 29 | \( 1 + (0.5 - 0.866i)T \) |
| 31 | \( 1 + (-0.5 - 0.866i)T \) |
| 37 | \( 1 - T \) |
| 41 | \( 1 + (0.5 + 0.866i)T \) |
| 43 | \( 1 + (0.5 - 0.866i)T \) |
| 47 | \( 1 + (-0.5 + 0.866i)T \) |
| 53 | \( 1 + T \) |
| 59 | \( 1 + (0.5 + 0.866i)T \) |
| 61 | \( 1 + (-0.5 + 0.866i)T \) |
| 67 | \( 1 + (0.5 + 0.866i)T \) |
| 71 | \( 1 - T \) |
| 73 | \( 1 - T \) |
| 79 | \( 1 + (-0.5 + 0.866i)T \) |
| 83 | \( 1 + (-0.5 + 0.866i)T \) |
| 89 | \( 1 - T \) |
| 97 | \( 1 + (0.5 - 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−34.381399504681706271077370772116, −32.745843343968825180805275378941, −31.30280267583153958988684296616, −30.528876205286991057218563581165, −29.35050010777095582773298479366, −27.94554490147556513983343776205, −27.56947017759310200020462943649, −25.87797159072455967631067350577, −24.94602908369519069118581505012, −23.05808537763083650546840655941, −21.91774727990832234613887797398, −20.79013162927799356246445393484, −19.71887573843978783522119987479, −18.310427350710028233853591129309, −17.57346243938264112789622021261, −15.88705110834848360153635660097, −14.26802439262418854060186318201, −12.58558247617182811327977389699, −11.68483267851063612348286288548, −10.19123787481185370580701801517, −8.919514238728154640911584339105, −7.58742421616382402395643119103, −5.24499814264478250614496320864, −3.330298957431496527835844980089, −1.54474594651549325427733735412,
1.067351993257728218488609668356, 4.147606581579310469065204414760, 5.88676066227881484131819960130, 7.3181106414903039163295544906, 8.57948695826822989436992851989, 10.04172275714930063405894550472, 11.44543758704392776439917913229, 13.71176218491971948402683198965, 14.426178629447459084940200036191, 16.15735221060706352418911039008, 16.93965815091351875558743929500, 18.29335636989591916245291879947, 19.41763203336929951676347582497, 20.873706800250642307277526773646, 22.56747582479688063158985794977, 23.78929074870833939877883357147, 24.58099736284453522983527464648, 26.062727534599654330717055294747, 26.881607302044681586248722288725, 27.960650724316858179136570486586, 29.29842349904856612876547413058, 30.685499806272144250845357844342, 32.169502865313291286750099835899, 33.096614944814669778618110813928, 34.09354844432550190639116750119