L(s) = 1 | + (0.382 + 0.923i)3-s + (0.923 + 0.382i)5-s + (−0.707 + 0.707i)9-s + (0.382 − 0.923i)11-s + (0.923 − 0.382i)13-s + i·15-s − i·17-s + (−0.923 + 0.382i)19-s + (0.707 − 0.707i)23-s + (0.707 + 0.707i)25-s + (−0.923 − 0.382i)27-s + (0.382 + 0.923i)29-s + 31-s + 33-s + (0.923 + 0.382i)37-s + ⋯ |
L(s) = 1 | + (0.382 + 0.923i)3-s + (0.923 + 0.382i)5-s + (−0.707 + 0.707i)9-s + (0.382 − 0.923i)11-s + (0.923 − 0.382i)13-s + i·15-s − i·17-s + (−0.923 + 0.382i)19-s + (0.707 − 0.707i)23-s + (0.707 + 0.707i)25-s + (−0.923 − 0.382i)27-s + (0.382 + 0.923i)29-s + 31-s + 33-s + (0.923 + 0.382i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.0980 + 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.0980 + 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.938656607 + 2.138977947i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.938656607 + 2.138977947i\) |
\(L(1)\) |
\(\approx\) |
\(1.378110354 + 0.6355380155i\) |
\(L(1)\) |
\(\approx\) |
\(1.378110354 + 0.6355380155i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (0.382 + 0.923i)T \) |
| 5 | \( 1 + (0.923 + 0.382i)T \) |
| 11 | \( 1 + (0.382 - 0.923i)T \) |
| 13 | \( 1 + (0.923 - 0.382i)T \) |
| 17 | \( 1 - iT \) |
| 19 | \( 1 + (-0.923 + 0.382i)T \) |
| 23 | \( 1 + (0.707 - 0.707i)T \) |
| 29 | \( 1 + (0.382 + 0.923i)T \) |
| 31 | \( 1 + T \) |
| 37 | \( 1 + (0.923 + 0.382i)T \) |
| 41 | \( 1 + (-0.707 + 0.707i)T \) |
| 43 | \( 1 + (-0.382 + 0.923i)T \) |
| 47 | \( 1 - iT \) |
| 53 | \( 1 + (0.382 - 0.923i)T \) |
| 59 | \( 1 + (0.923 + 0.382i)T \) |
| 61 | \( 1 + (0.382 + 0.923i)T \) |
| 67 | \( 1 + (-0.382 - 0.923i)T \) |
| 71 | \( 1 + (-0.707 - 0.707i)T \) |
| 73 | \( 1 + (0.707 - 0.707i)T \) |
| 79 | \( 1 + iT \) |
| 83 | \( 1 + (-0.923 + 0.382i)T \) |
| 89 | \( 1 + (-0.707 - 0.707i)T \) |
| 97 | \( 1 + T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.50781435833675781595259973269, −23.0097959781826092436061322798, −21.746219823270014629833913858395, −20.81020808295323136425092769728, −20.25738974901122512867329429516, −19.18861976698726173069055768864, −18.39532240560682276940295986588, −17.51867325192777021526966937722, −17.02269507068185610636780106991, −15.662033615904812572817873562866, −14.66328368778549869337980340039, −13.65566645720939683343587949441, −13.281854589257375710902679608663, −12.23869928959521038480248198588, −11.40116636498926441333075119741, −10.00977050518171082525687900346, −9.12872058289031490776119868116, −8.42758594342924183841764493938, −7.10668725535681563451465122352, −6.474259559070554738416874556, −5.40369543497053133378579851775, −4.15597481627119645353117633173, −2.66038498724629479111012935686, −1.81102442726263277275092924622, −0.7690219435078756029485223503,
1.29688373716385013437675028550, 2.70241771561430296708326456732, 3.52531039427858702079169461133, 4.67352739496626171110207698834, 5.89439059998651718256975935233, 6.46496734287808708348992971108, 8.2888273758622831216105148340, 8.73528383617978901911662599518, 9.90603757644623722179210374378, 10.62825485448730971987237115868, 11.26410259478769824921287958863, 12.882020981438080408497808339561, 13.64123044406961001689800417972, 14.5619216632894781446945310680, 15.12027555124962667144138849183, 16.37733214696531652661483370795, 16.89325096517905599956157941689, 17.95224191289123940340507834871, 18.95863349158012279004488688241, 19.7665677749814089848321250147, 21.01693868144767882096477351150, 21.26376764658640781317555185294, 22.16898232066773654234694840392, 22.91090141293141595151981253851, 24.077940162915754331038894239844