L(s) = 1 | + (−0.923 + 0.382i)3-s + (0.382 − 0.923i)5-s + (0.707 − 0.707i)9-s + (−0.923 − 0.382i)11-s + (0.382 + 0.923i)13-s + i·15-s − i·17-s + (−0.382 − 0.923i)19-s + (−0.707 + 0.707i)23-s + (−0.707 − 0.707i)25-s + (−0.382 + 0.923i)27-s + (−0.923 + 0.382i)29-s + 31-s + 33-s + (0.382 − 0.923i)37-s + ⋯ |
L(s) = 1 | + (−0.923 + 0.382i)3-s + (0.382 − 0.923i)5-s + (0.707 − 0.707i)9-s + (−0.923 − 0.382i)11-s + (0.382 + 0.923i)13-s + i·15-s − i·17-s + (−0.382 − 0.923i)19-s + (−0.707 + 0.707i)23-s + (−0.707 − 0.707i)25-s + (−0.382 + 0.923i)27-s + (−0.923 + 0.382i)29-s + 31-s + 33-s + (0.382 − 0.923i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.634 + 0.773i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.634 + 0.773i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9762787205 + 0.4617454462i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9762787205 + 0.4617454462i\) |
\(L(1)\) |
\(\approx\) |
\(0.7964576232 + 0.03116165246i\) |
\(L(1)\) |
\(\approx\) |
\(0.7964576232 + 0.03116165246i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (-0.923 + 0.382i)T \) |
| 5 | \( 1 + (0.382 - 0.923i)T \) |
| 11 | \( 1 + (-0.923 - 0.382i)T \) |
| 13 | \( 1 + (0.382 + 0.923i)T \) |
| 17 | \( 1 - iT \) |
| 19 | \( 1 + (-0.382 - 0.923i)T \) |
| 23 | \( 1 + (-0.707 + 0.707i)T \) |
| 29 | \( 1 + (-0.923 + 0.382i)T \) |
| 31 | \( 1 + T \) |
| 37 | \( 1 + (0.382 - 0.923i)T \) |
| 41 | \( 1 + (0.707 - 0.707i)T \) |
| 43 | \( 1 + (0.923 + 0.382i)T \) |
| 47 | \( 1 - iT \) |
| 53 | \( 1 + (-0.923 - 0.382i)T \) |
| 59 | \( 1 + (0.382 - 0.923i)T \) |
| 61 | \( 1 + (-0.923 + 0.382i)T \) |
| 67 | \( 1 + (0.923 - 0.382i)T \) |
| 71 | \( 1 + (0.707 + 0.707i)T \) |
| 73 | \( 1 + (-0.707 + 0.707i)T \) |
| 79 | \( 1 + iT \) |
| 83 | \( 1 + (-0.382 - 0.923i)T \) |
| 89 | \( 1 + (0.707 + 0.707i)T \) |
| 97 | \( 1 + T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.38978905481081796824202346055, −22.80884240193874998690231915816, −22.289625991908932394614335453702, −21.18475767896849730954765524404, −20.40311066788009270036901465832, −18.98481744863340094677600515204, −18.34246475152836793730782100709, −17.87630285629517001453171574032, −16.88495401902137298934881062462, −15.88144790808872320056277206030, −15.083220180365705844893336669389, −13.90125140208977065999489552410, −13.113705262490050368319522302795, −12.20711998161651051903495830839, −11.1985418584272539661716831801, −10.405797070362950640135838130933, −9.83281887740755894159720905758, −8.05602641064244369126261965863, −7.36545226186926013263560429349, −6.25563933261689527105381531154, −5.64163236755641901461568041380, −4.4879859918165468763451976692, −2.97369049795812060630169901083, −1.959854051526102139395979962537, −0.42749523033158600934142403832,
0.83472156403740780534176003339, 2.06956203302998503883018936634, 3.85014612999136889075260823135, 4.7004813086132855165596880746, 5.66323047940893230110367419947, 6.34047956726102128450269266458, 7.72983538007656943441628052690, 8.88816402246085989858361046486, 9.65571663309571296434932486301, 10.73667522333872797942700343430, 11.43446817554881383153450472688, 12.58619277130932223604250840036, 13.12922280469845549569571496736, 14.25918280527982931155434213722, 15.716229210110602284047975067194, 16.01221761596144768270756190418, 17.10755107847391331940714710513, 17.58141978214730511253073270080, 18.64108634251317308218177212350, 19.63865673105599861270177720890, 20.87800932119156751704390949800, 21.33538520815363141577169002459, 22.01073573649003996580405874500, 23.236288210468907547190925710337, 23.97260415850912975361165467892