L(s) = 1 | − 3-s − 7-s + 9-s − 13-s + 17-s − 19-s + 21-s + 23-s − 27-s + 29-s − 31-s + 37-s + 39-s − 41-s + 43-s + 47-s + 49-s − 51-s + 53-s + 57-s + 59-s + 61-s − 63-s − 67-s − 69-s − 71-s + 73-s + ⋯ |
L(s) = 1 | − 3-s − 7-s + 9-s − 13-s + 17-s − 19-s + 21-s + 23-s − 27-s + 29-s − 31-s + 37-s + 39-s − 41-s + 43-s + 47-s + 49-s − 51-s + 53-s + 57-s + 59-s + 61-s − 63-s − 67-s − 69-s − 71-s + 73-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 440 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 440 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7502734958\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7502734958\) |
\(L(1)\) |
\(\approx\) |
\(0.7126374360\) |
\(L(1)\) |
\(\approx\) |
\(0.7126374360\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 11 | \( 1 \) |
good | 3 | \( 1 - T \) |
| 7 | \( 1 - T \) |
| 13 | \( 1 - T \) |
| 17 | \( 1 + T \) |
| 19 | \( 1 - T \) |
| 23 | \( 1 + T \) |
| 29 | \( 1 + T \) |
| 31 | \( 1 - T \) |
| 37 | \( 1 + T \) |
| 41 | \( 1 - T \) |
| 43 | \( 1 + T \) |
| 47 | \( 1 + T \) |
| 53 | \( 1 + T \) |
| 59 | \( 1 + T \) |
| 61 | \( 1 + T \) |
| 67 | \( 1 - T \) |
| 71 | \( 1 - T \) |
| 73 | \( 1 + T \) |
| 79 | \( 1 + T \) |
| 83 | \( 1 + T \) |
| 89 | \( 1 + T \) |
| 97 | \( 1 - T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.725816872424116214897402463814, −23.29396858532091997094534944275, −22.328437127028198479067634629326, −21.7570541069268074088745726846, −20.8113001726488819089774506197, −19.4842394361912032209461247805, −18.98492632824841024322330205505, −17.94858791595746089330621524421, −16.89822451554131892735648817716, −16.56441324057650110603415747412, −15.479196093038203844073782028282, −14.59678112680324825256081490528, −13.218211706703162665819275372061, −12.54395498009012034731284520708, −11.83592081677514890175440784461, −10.62729670458200995920935567944, −10.00346635272957889861281380278, −9.03057106121922197044615465727, −7.526452546026192423887387766384, −6.74404982863630990024061286335, −5.82323281720518341046721082239, −4.88631177106453436844260060986, −3.74500949115473159710340299213, −2.43491780205073226844995805797, −0.77652854636310367516441322432,
0.77652854636310367516441322432, 2.43491780205073226844995805797, 3.74500949115473159710340299213, 4.88631177106453436844260060986, 5.82323281720518341046721082239, 6.74404982863630990024061286335, 7.526452546026192423887387766384, 9.03057106121922197044615465727, 10.00346635272957889861281380278, 10.62729670458200995920935567944, 11.83592081677514890175440784461, 12.54395498009012034731284520708, 13.218211706703162665819275372061, 14.59678112680324825256081490528, 15.479196093038203844073782028282, 16.56441324057650110603415747412, 16.89822451554131892735648817716, 17.94858791595746089330621524421, 18.98492632824841024322330205505, 19.4842394361912032209461247805, 20.8113001726488819089774506197, 21.7570541069268074088745726846, 22.328437127028198479067634629326, 23.29396858532091997094534944275, 23.725816872424116214897402463814