Properties

Label 1-435-435.434-r1-0-0
Degree $1$
Conductor $435$
Sign $1$
Analytic cond. $46.7472$
Root an. cond. $46.7472$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 7-s − 8-s + 11-s − 13-s + 14-s + 16-s − 17-s − 19-s − 22-s + 23-s + 26-s − 28-s − 31-s − 32-s + 34-s + 37-s + 38-s + 41-s + 43-s + 44-s − 46-s − 47-s + 49-s − 52-s + 53-s + ⋯
L(s)  = 1  − 2-s + 4-s − 7-s − 8-s + 11-s − 13-s + 14-s + 16-s − 17-s − 19-s − 22-s + 23-s + 26-s − 28-s − 31-s − 32-s + 34-s + 37-s + 38-s + 41-s + 43-s + 44-s − 46-s − 47-s + 49-s − 52-s + 53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 435 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 435 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(435\)    =    \(3 \cdot 5 \cdot 29\)
Sign: $1$
Analytic conductor: \(46.7472\)
Root analytic conductor: \(46.7472\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{435} (434, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((1,\ 435,\ (1:\ ),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.8003944997\)
\(L(\frac12)\) \(\approx\) \(0.8003944997\)
\(L(1)\) \(\approx\) \(0.6025113542\)
\(L(1)\) \(\approx\) \(0.6025113542\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
29 \( 1 \)
good2 \( 1 - T \)
7 \( 1 - T \)
11 \( 1 + T \)
13 \( 1 - T \)
17 \( 1 - T \)
19 \( 1 - T \)
23 \( 1 + T \)
31 \( 1 - T \)
37 \( 1 + T \)
41 \( 1 + T \)
43 \( 1 + T \)
47 \( 1 - T \)
53 \( 1 + T \)
59 \( 1 - T \)
61 \( 1 - T \)
67 \( 1 - T \)
71 \( 1 - T \)
73 \( 1 + T \)
79 \( 1 - T \)
83 \( 1 + T \)
89 \( 1 + T \)
97 \( 1 + T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−24.21649630334711204388469463636, −23.003324046523983853431477828039, −22.08106414818492329034188288645, −21.28192572272282020737363789878, −19.94334377550588716954757647773, −19.63137004600196349229114578799, −18.85480796964353907718003542737, −17.7451565396487420453392746699, −16.95047119341094338043369325699, −16.36973059379572984203898470118, −15.25399777408921672965982575732, −14.59061756119628453276042821863, −13.075394759368819861643578138502, −12.32381255292160690095268941761, −11.27088766298430001199390233692, −10.41292540062158994930253878483, −9.28872845580465017941777112707, −8.99870619189365054818276542947, −7.542253840796251426452541319131, −6.74194501749104339493084718755, −5.992996704537021704968202805847, −4.351663874297785056657980955028, −3.04680955804736040464119932757, −2.02723499398324805624239895303, −0.55520049399039061998617534658, 0.55520049399039061998617534658, 2.02723499398324805624239895303, 3.04680955804736040464119932757, 4.351663874297785056657980955028, 5.992996704537021704968202805847, 6.74194501749104339493084718755, 7.542253840796251426452541319131, 8.99870619189365054818276542947, 9.28872845580465017941777112707, 10.41292540062158994930253878483, 11.27088766298430001199390233692, 12.32381255292160690095268941761, 13.075394759368819861643578138502, 14.59061756119628453276042821863, 15.25399777408921672965982575732, 16.36973059379572984203898470118, 16.95047119341094338043369325699, 17.7451565396487420453392746699, 18.85480796964353907718003542737, 19.63137004600196349229114578799, 19.94334377550588716954757647773, 21.28192572272282020737363789878, 22.08106414818492329034188288645, 23.003324046523983853431477828039, 24.21649630334711204388469463636

Graph of the $Z$-function along the critical line