L(s) = 1 | + (0.690 − 0.723i)2-s + (0.866 + 0.5i)3-s + (−0.0475 − 0.998i)4-s + (0.959 − 0.281i)6-s + (−0.755 − 0.654i)8-s + (0.5 + 0.866i)9-s + (0.458 − 0.888i)12-s + (−0.540 − 0.841i)13-s + (−0.995 + 0.0950i)16-s + (0.618 − 0.786i)17-s + (0.971 + 0.235i)18-s + (−0.786 + 0.618i)19-s + (−0.0950 − 0.995i)23-s + (−0.327 − 0.945i)24-s + (−0.981 − 0.189i)26-s + i·27-s + ⋯ |
L(s) = 1 | + (0.690 − 0.723i)2-s + (0.866 + 0.5i)3-s + (−0.0475 − 0.998i)4-s + (0.959 − 0.281i)6-s + (−0.755 − 0.654i)8-s + (0.5 + 0.866i)9-s + (0.458 − 0.888i)12-s + (−0.540 − 0.841i)13-s + (−0.995 + 0.0950i)16-s + (0.618 − 0.786i)17-s + (0.971 + 0.235i)18-s + (−0.786 + 0.618i)19-s + (−0.0950 − 0.995i)23-s + (−0.327 − 0.945i)24-s + (−0.981 − 0.189i)26-s + i·27-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4235 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.662 - 0.749i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4235 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.662 - 0.749i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.126787176 - 2.498991195i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.126787176 - 2.498991195i\) |
\(L(1)\) |
\(\approx\) |
\(1.579226618 - 0.8191173090i\) |
\(L(1)\) |
\(\approx\) |
\(1.579226618 - 0.8191173090i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 7 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (0.690 - 0.723i)T \) |
| 3 | \( 1 + (0.866 + 0.5i)T \) |
| 13 | \( 1 + (-0.540 - 0.841i)T \) |
| 17 | \( 1 + (0.618 - 0.786i)T \) |
| 19 | \( 1 + (-0.786 + 0.618i)T \) |
| 23 | \( 1 + (-0.0950 - 0.995i)T \) |
| 29 | \( 1 + (0.142 + 0.989i)T \) |
| 31 | \( 1 + (0.888 - 0.458i)T \) |
| 37 | \( 1 + (-0.998 - 0.0475i)T \) |
| 41 | \( 1 + (0.959 - 0.281i)T \) |
| 43 | \( 1 + (-0.755 - 0.654i)T \) |
| 47 | \( 1 + (-0.971 + 0.235i)T \) |
| 53 | \( 1 + (0.0950 - 0.995i)T \) |
| 59 | \( 1 + (0.723 - 0.690i)T \) |
| 61 | \( 1 + (-0.235 - 0.971i)T \) |
| 67 | \( 1 + (-0.971 - 0.235i)T \) |
| 71 | \( 1 + (-0.142 - 0.989i)T \) |
| 73 | \( 1 + (0.814 - 0.580i)T \) |
| 79 | \( 1 + (0.327 - 0.945i)T \) |
| 83 | \( 1 + (0.909 - 0.415i)T \) |
| 89 | \( 1 + (0.928 - 0.371i)T \) |
| 97 | \( 1 + (-0.755 - 0.654i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.658922369740693617286074657813, −17.709547316261341012011830455107, −17.31353434529088172458048220223, −16.507843040410420637113816181240, −15.70001741294724763458325609279, −15.03838087181483131681948426646, −14.63360799203591059166590926204, −13.82287087565780576620229214223, −13.42413463442626345029226299867, −12.67261075985253682274503583716, −12.03848863784209812128188135688, −11.45880357545383112366442584099, −10.22488377023298281657924233060, −9.420505403466788024764480231201, −8.728125597322472821114254245049, −8.07376632477539616020930057392, −7.4806469601798226393352864560, −6.70872863647768169422974490998, −6.2386592745053922546772932648, −5.254874688252290104273148514350, −4.32952452585008995217905967344, −3.82687491248473194336460631072, −2.89414039407597067194561167554, −2.26506070785965697155120292187, −1.29143817600651510348898963872,
0.47921362861088165937395464408, 1.733106012979504105552160530717, 2.39183407396711208702244089229, 3.204123766252898685074531909551, 3.637009837600513393408210596153, 4.76101132909997537482549320572, 4.978175955947312149494046739412, 6.023177272160443906951531678488, 6.90449348583768262927828504927, 7.83287725251942492263354809043, 8.54807334719165694242278833481, 9.328446631936791217430386124700, 10.1140396569130105912304449297, 10.3991302317218146339972136115, 11.2064176879507453013384972618, 12.25678534221616382716786050683, 12.590147111383390745288496981278, 13.46211273519307778711715203839, 14.05171160472963539570008542602, 14.75227911996262151995759234387, 15.03083400107155808405268411421, 15.9845899285492878059043103584, 16.47756012422966400433356302225, 17.58181191814269267186828894429, 18.41668298720442312347934249253