L(s) = 1 | + (0.441 − 0.897i)2-s + (0.587 + 0.809i)3-s + (−0.610 − 0.791i)4-s + (0.985 − 0.170i)6-s + (−0.980 + 0.198i)8-s + (−0.309 + 0.951i)9-s + (0.281 − 0.959i)12-s + (0.825 + 0.564i)13-s + (−0.254 + 0.967i)16-s + (0.389 − 0.921i)17-s + (0.717 + 0.696i)18-s + (0.974 + 0.226i)19-s + (−0.540 + 0.841i)23-s + (−0.736 − 0.676i)24-s + (0.870 − 0.491i)26-s + (−0.951 + 0.309i)27-s + ⋯ |
L(s) = 1 | + (0.441 − 0.897i)2-s + (0.587 + 0.809i)3-s + (−0.610 − 0.791i)4-s + (0.985 − 0.170i)6-s + (−0.980 + 0.198i)8-s + (−0.309 + 0.951i)9-s + (0.281 − 0.959i)12-s + (0.825 + 0.564i)13-s + (−0.254 + 0.967i)16-s + (0.389 − 0.921i)17-s + (0.717 + 0.696i)18-s + (0.974 + 0.226i)19-s + (−0.540 + 0.841i)23-s + (−0.736 − 0.676i)24-s + (0.870 − 0.491i)26-s + (−0.951 + 0.309i)27-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4235 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.988 - 0.150i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4235 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.988 - 0.150i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.622595374 - 0.1985662687i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.622595374 - 0.1985662687i\) |
\(L(1)\) |
\(\approx\) |
\(1.524277793 - 0.2801485579i\) |
\(L(1)\) |
\(\approx\) |
\(1.524277793 - 0.2801485579i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 7 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (0.441 - 0.897i)T \) |
| 3 | \( 1 + (0.587 + 0.809i)T \) |
| 13 | \( 1 + (0.825 + 0.564i)T \) |
| 17 | \( 1 + (0.389 - 0.921i)T \) |
| 19 | \( 1 + (0.974 + 0.226i)T \) |
| 23 | \( 1 + (-0.540 + 0.841i)T \) |
| 29 | \( 1 + (-0.0855 - 0.996i)T \) |
| 31 | \( 1 + (0.0285 - 0.999i)T \) |
| 37 | \( 1 + (0.336 - 0.941i)T \) |
| 41 | \( 1 + (0.466 + 0.884i)T \) |
| 43 | \( 1 + (0.909 + 0.415i)T \) |
| 47 | \( 1 + (-0.717 + 0.696i)T \) |
| 53 | \( 1 + (0.967 - 0.254i)T \) |
| 59 | \( 1 + (-0.466 + 0.884i)T \) |
| 61 | \( 1 + (-0.897 + 0.441i)T \) |
| 67 | \( 1 + (0.989 + 0.142i)T \) |
| 71 | \( 1 + (0.516 - 0.856i)T \) |
| 73 | \( 1 + (-0.931 + 0.362i)T \) |
| 79 | \( 1 + (-0.993 + 0.113i)T \) |
| 83 | \( 1 + (0.633 - 0.774i)T \) |
| 89 | \( 1 + (-0.654 + 0.755i)T \) |
| 97 | \( 1 + (0.676 - 0.736i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.418536863261265090165673346209, −17.68494442794814099817376746362, −17.11288555506483182767839936116, −16.18400411922134219201798605900, −15.65284855575526248245377639894, −14.889687743198682267065604161288, −14.26886827779268008035611826943, −13.77959976529756820544815859804, −13.050070140586360351861904933846, −12.49119492841455580768546197140, −11.967639400858792552730272515157, −10.916021201362462677612091556133, −9.97692193974922262446675225263, −9.032909464237912223302163821327, −8.4676453996024917583041099974, −7.96466002087702728044396269857, −7.19457070089883879004876536813, −6.56581513151314338544479711193, −5.86954617910083116834186318768, −5.22429397659260319443348789023, −4.11489591827021584876915427733, −3.40806231125078842431197218993, −2.84734988115198193361153096457, −1.67363450002910057999079066685, −0.713538035327350060979404196678,
0.90478530602193218235194797828, 1.88426730840731522659270278611, 2.693056705011101433740380277859, 3.36535259721853990127981265689, 4.09324489533286483797429713616, 4.59828859478524391168356984341, 5.61657598860502770025392242948, 6.00811247807758265998308177923, 7.41976927860796581278980169193, 8.07545236729241516760867505984, 9.0759773710162126490534082076, 9.52850919222741493723876003644, 9.98031920032979385072397323608, 10.95811745094175364102232480684, 11.45415592079685802593218838840, 12.00045086984222667586071827898, 13.16462352055057749582071993262, 13.592145712782286942063821836792, 14.21260454125850485122420921147, 14.74201667248891342235194712514, 15.691051279804795392793397154144, 16.04076292623257952137600037516, 16.91298743861715927188093837745, 17.98205918530346118585999371659, 18.46647205229459581894663160570