L(s) = 1 | − 2-s − 3-s + 4-s + 6-s − 7-s − 8-s + 9-s − 11-s − 12-s + 13-s + 14-s + 16-s + 17-s − 18-s + 19-s + 21-s + 22-s − 23-s + 24-s − 26-s − 27-s − 28-s − 29-s − 31-s − 32-s + 33-s − 34-s + ⋯ |
L(s) = 1 | − 2-s − 3-s + 4-s + 6-s − 7-s − 8-s + 9-s − 11-s − 12-s + 13-s + 14-s + 16-s + 17-s − 18-s + 19-s + 21-s + 22-s − 23-s + 24-s − 26-s − 27-s − 28-s − 29-s − 31-s − 32-s + 33-s − 34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4195 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4195 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2594122125\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2594122125\) |
\(L(1)\) |
\(\approx\) |
\(0.3880376601\) |
\(L(1)\) |
\(\approx\) |
\(0.3880376601\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 839 | \( 1 \) |
good | 2 | \( 1 - T \) |
| 3 | \( 1 - T \) |
| 7 | \( 1 - T \) |
| 11 | \( 1 - T \) |
| 13 | \( 1 + T \) |
| 17 | \( 1 + T \) |
| 19 | \( 1 + T \) |
| 23 | \( 1 - T \) |
| 29 | \( 1 - T \) |
| 31 | \( 1 - T \) |
| 37 | \( 1 - T \) |
| 41 | \( 1 - T \) |
| 43 | \( 1 - T \) |
| 47 | \( 1 - T \) |
| 53 | \( 1 - T \) |
| 59 | \( 1 + T \) |
| 61 | \( 1 + T \) |
| 67 | \( 1 + T \) |
| 71 | \( 1 - T \) |
| 73 | \( 1 - T \) |
| 79 | \( 1 - T \) |
| 83 | \( 1 + T \) |
| 89 | \( 1 - T \) |
| 97 | \( 1 + T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.25649176245887669740425991350, −17.690546691997999604605156789545, −16.71862250467170591898007429639, −16.322342850774935062536191076338, −15.85823766326917219395457459922, −15.31881598131136749476496491339, −14.17653064882744141779960045257, −13.08121172914509301092868958203, −12.76565241714874153768249053928, −11.74067707480681186944056851378, −11.43243229862775738896463956039, −10.3463052336293794379206924153, −10.16048035032762944210787618166, −9.46133492179986399978329129372, −8.52635621359988102802890167206, −7.69319012548309952145600848162, −7.11942679832075092888298337551, −6.34295474718166288232516723422, −5.67864106052277287994867076529, −5.203941092707534672133563421094, −3.64174345555824828467430203640, −3.29198203078657115038347748343, −2.00029791621789221797010228885, −1.244448592914520751821415951318, −0.24109381714694480689166144311,
0.24109381714694480689166144311, 1.244448592914520751821415951318, 2.00029791621789221797010228885, 3.29198203078657115038347748343, 3.64174345555824828467430203640, 5.203941092707534672133563421094, 5.67864106052277287994867076529, 6.34295474718166288232516723422, 7.11942679832075092888298337551, 7.69319012548309952145600848162, 8.52635621359988102802890167206, 9.46133492179986399978329129372, 10.16048035032762944210787618166, 10.3463052336293794379206924153, 11.43243229862775738896463956039, 11.74067707480681186944056851378, 12.76565241714874153768249053928, 13.08121172914509301092868958203, 14.17653064882744141779960045257, 15.31881598131136749476496491339, 15.85823766326917219395457459922, 16.322342850774935062536191076338, 16.71862250467170591898007429639, 17.690546691997999604605156789545, 18.25649176245887669740425991350