Properties

Label 1-4081-4081.4080-r0-0-0
Degree $1$
Conductor $4081$
Sign $1$
Analytic cond. $18.9520$
Root an. cond. $18.9520$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 5-s + 6-s + 8-s + 9-s + 10-s + 12-s + 13-s + 15-s + 16-s + 17-s + 18-s − 19-s + 20-s − 23-s + 24-s + 25-s + 26-s + 27-s − 29-s + 30-s + 31-s + 32-s + 34-s + 36-s + ⋯
L(s)  = 1  + 2-s + 3-s + 4-s + 5-s + 6-s + 8-s + 9-s + 10-s + 12-s + 13-s + 15-s + 16-s + 17-s + 18-s − 19-s + 20-s − 23-s + 24-s + 25-s + 26-s + 27-s − 29-s + 30-s + 31-s + 32-s + 34-s + 36-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4081 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4081 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(4081\)    =    \(7 \cdot 11 \cdot 53\)
Sign: $1$
Analytic conductor: \(18.9520\)
Root analytic conductor: \(18.9520\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{4081} (4080, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((1,\ 4081,\ (0:\ ),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(7.270168564\)
\(L(\frac12)\) \(\approx\) \(7.270168564\)
\(L(1)\) \(\approx\) \(3.483993407\)
\(L(1)\) \(\approx\) \(3.483993407\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
11 \( 1 \)
53 \( 1 \)
good2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 + T \)
13 \( 1 + T \)
17 \( 1 + T \)
19 \( 1 - T \)
23 \( 1 - T \)
29 \( 1 - T \)
31 \( 1 + T \)
37 \( 1 + T \)
41 \( 1 - T \)
43 \( 1 - T \)
47 \( 1 - T \)
59 \( 1 - T \)
61 \( 1 - T \)
67 \( 1 - T \)
71 \( 1 - T \)
73 \( 1 - T \)
79 \( 1 + T \)
83 \( 1 - T \)
89 \( 1 - T \)
97 \( 1 - T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−18.57826782442516663697226517414, −17.87406766818562909960823157691, −16.71667440967585586546726494433, −16.439660964417189238798524526949, −15.389556384687949787084994735927, −14.92367266864026873680991071081, −14.250982277273196680497794908584, −13.64901945442354353508440982692, −13.24036568345006255163791344901, −12.595080557361649075025053348790, −11.78611315954499021427256489881, −10.80740406897256973327244797796, −10.157549076122943538379404562498, −9.61511890863441856309251344220, −8.57218837999489213222022434256, −8.028682411259818106147047767032, −7.14140601671853085521822659548, −6.25727489852639663160216058255, −5.90525429504266016227602015487, −4.84664579042281871956403954668, −4.146119860650611712394368412577, −3.32303895826702083054121560192, −2.750518563286789888458768255047, −1.76471040958674984485974372437, −1.42495298827754090452345046355, 1.42495298827754090452345046355, 1.76471040958674984485974372437, 2.750518563286789888458768255047, 3.32303895826702083054121560192, 4.146119860650611712394368412577, 4.84664579042281871956403954668, 5.90525429504266016227602015487, 6.25727489852639663160216058255, 7.14140601671853085521822659548, 8.028682411259818106147047767032, 8.57218837999489213222022434256, 9.61511890863441856309251344220, 10.157549076122943538379404562498, 10.80740406897256973327244797796, 11.78611315954499021427256489881, 12.595080557361649075025053348790, 13.24036568345006255163791344901, 13.64901945442354353508440982692, 14.250982277273196680497794908584, 14.92367266864026873680991071081, 15.389556384687949787084994735927, 16.439660964417189238798524526949, 16.71667440967585586546726494433, 17.87406766818562909960823157691, 18.57826782442516663697226517414

Graph of the $Z$-function along the critical line