| L(s) = 1 | + (0.669 − 0.743i)2-s + (0.669 + 0.743i)3-s + (−0.104 − 0.994i)4-s + (−0.5 + 0.866i)5-s + 6-s + (−0.809 + 0.587i)7-s + (−0.809 − 0.587i)8-s + (−0.104 + 0.994i)9-s + (0.309 + 0.951i)10-s + (−0.809 + 0.587i)11-s + (0.669 − 0.743i)12-s + (−0.104 + 0.994i)14-s + (−0.978 + 0.207i)15-s + (−0.978 + 0.207i)16-s + (−0.809 − 0.587i)17-s + (0.669 + 0.743i)18-s + ⋯ |
| L(s) = 1 | + (0.669 − 0.743i)2-s + (0.669 + 0.743i)3-s + (−0.104 − 0.994i)4-s + (−0.5 + 0.866i)5-s + 6-s + (−0.809 + 0.587i)7-s + (−0.809 − 0.587i)8-s + (−0.104 + 0.994i)9-s + (0.309 + 0.951i)10-s + (−0.809 + 0.587i)11-s + (0.669 − 0.743i)12-s + (−0.104 + 0.994i)14-s + (−0.978 + 0.207i)15-s + (−0.978 + 0.207i)16-s + (−0.809 − 0.587i)17-s + (0.669 + 0.743i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 403 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.0452 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 403 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.0452 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8829214865 + 0.9237909013i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.8829214865 + 0.9237909013i\) |
| \(L(1)\) |
\(\approx\) |
\(1.226394733 + 0.2128436120i\) |
| \(L(1)\) |
\(\approx\) |
\(1.226394733 + 0.2128436120i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 13 | \( 1 \) |
| 31 | \( 1 \) |
| good | 2 | \( 1 + (0.669 - 0.743i)T \) |
| 3 | \( 1 + (0.669 + 0.743i)T \) |
| 5 | \( 1 + (-0.5 + 0.866i)T \) |
| 7 | \( 1 + (-0.809 + 0.587i)T \) |
| 11 | \( 1 + (-0.809 + 0.587i)T \) |
| 17 | \( 1 + (-0.809 - 0.587i)T \) |
| 19 | \( 1 + (0.309 + 0.951i)T \) |
| 23 | \( 1 + (-0.104 + 0.994i)T \) |
| 29 | \( 1 + (0.669 - 0.743i)T \) |
| 37 | \( 1 + (-0.5 + 0.866i)T \) |
| 41 | \( 1 + (0.309 + 0.951i)T \) |
| 43 | \( 1 + (0.309 + 0.951i)T \) |
| 47 | \( 1 + (0.309 - 0.951i)T \) |
| 53 | \( 1 + (0.913 - 0.406i)T \) |
| 59 | \( 1 + (0.309 - 0.951i)T \) |
| 61 | \( 1 + (-0.5 + 0.866i)T \) |
| 67 | \( 1 + T \) |
| 71 | \( 1 + (-0.104 + 0.994i)T \) |
| 73 | \( 1 + (-0.104 - 0.994i)T \) |
| 79 | \( 1 + (-0.104 + 0.994i)T \) |
| 83 | \( 1 + (-0.978 - 0.207i)T \) |
| 89 | \( 1 + (0.913 + 0.406i)T \) |
| 97 | \( 1 + (-0.104 - 0.994i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.12580923099361300827692590581, −23.59316189016706568502601853583, −22.71822265515723432937334969100, −21.566637484578835227757719027062, −20.56101530626511353683412253270, −19.92743245170024666900128293395, −19.029374275990996847582091706165, −17.85649155183818853478911842709, −16.97910209611092505003049810436, −15.94326523238091098265220180422, −15.50655506253042006406289937571, −14.18591492683986268756499270294, −13.42823294260792793946430346927, −12.82575161819332239751888510183, −12.18666468836092515197867766412, −10.7955219147880058222718328833, −9.06664912105270366290965019515, −8.549768313792852331183649542935, −7.52974006484845239346144710997, −6.80692969486032815963597491027, −5.72922431238602414944206185446, −4.455089747906153967970617185879, −3.533519001818215962976844001771, −2.49865613078407673667241406174, −0.5158759304949038026160049038,
2.20996828252327676453083674009, 2.91966575231159957576824442773, 3.72837094390239097307838181352, 4.77698278763790283959453485163, 5.89057932193805892152370212338, 7.11618841883565191418614981297, 8.37271413033424319582741797486, 9.73153244904986840359291283525, 10.03882463427826735404189210024, 11.15689413732418743071564469375, 12.00119669513197760858545553197, 13.155839622429496073957886583149, 13.912626372243004438173370512689, 14.95347043859721580454557465874, 15.50320992940127049355593526546, 16.10452798432042311304496663376, 18.01578551860779761512943005417, 18.80799098355159766241028378994, 19.56121746503119583371867404551, 20.24312467134230777975003314689, 21.221472123443831120698389800702, 21.93194454746554376218737565023, 22.75204409474935340084344140480, 23.18937011657866236535128257297, 24.61235459539760762138002714707