L(s) = 1 | + (−0.893 − 0.448i)2-s + (0.597 + 0.802i)4-s + (0.286 + 0.957i)5-s + (0.396 + 0.918i)7-s + (−0.173 − 0.984i)8-s + (0.173 − 0.984i)10-s + (−0.973 + 0.230i)11-s + (−0.835 − 0.549i)13-s + (0.0581 − 0.998i)14-s + (−0.286 + 0.957i)16-s + (0.939 − 0.342i)17-s + (−0.939 − 0.342i)19-s + (−0.597 + 0.802i)20-s + (0.973 + 0.230i)22-s + (−0.396 + 0.918i)23-s + ⋯ |
L(s) = 1 | + (−0.893 − 0.448i)2-s + (0.597 + 0.802i)4-s + (0.286 + 0.957i)5-s + (0.396 + 0.918i)7-s + (−0.173 − 0.984i)8-s + (0.173 − 0.984i)10-s + (−0.973 + 0.230i)11-s + (−0.835 − 0.549i)13-s + (0.0581 − 0.998i)14-s + (−0.286 + 0.957i)16-s + (0.939 − 0.342i)17-s + (−0.939 − 0.342i)19-s + (−0.597 + 0.802i)20-s + (0.973 + 0.230i)22-s + (−0.396 + 0.918i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.581 + 0.813i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.581 + 0.813i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2943714876 + 0.5722389391i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2943714876 + 0.5722389391i\) |
\(L(1)\) |
\(\approx\) |
\(0.6252418340 + 0.1590045646i\) |
\(L(1)\) |
\(\approx\) |
\(0.6252418340 + 0.1590045646i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
good | 2 | \( 1 + (-0.893 - 0.448i)T \) |
| 5 | \( 1 + (0.286 + 0.957i)T \) |
| 7 | \( 1 + (0.396 + 0.918i)T \) |
| 11 | \( 1 + (-0.973 + 0.230i)T \) |
| 13 | \( 1 + (-0.835 - 0.549i)T \) |
| 17 | \( 1 + (0.939 - 0.342i)T \) |
| 19 | \( 1 + (-0.939 - 0.342i)T \) |
| 23 | \( 1 + (-0.396 + 0.918i)T \) |
| 29 | \( 1 + (0.0581 + 0.998i)T \) |
| 31 | \( 1 + (-0.993 + 0.116i)T \) |
| 37 | \( 1 + (0.766 + 0.642i)T \) |
| 41 | \( 1 + (-0.893 + 0.448i)T \) |
| 43 | \( 1 + (-0.686 - 0.727i)T \) |
| 47 | \( 1 + (0.993 + 0.116i)T \) |
| 53 | \( 1 + (0.5 - 0.866i)T \) |
| 59 | \( 1 + (-0.973 - 0.230i)T \) |
| 61 | \( 1 + (0.597 - 0.802i)T \) |
| 67 | \( 1 + (-0.0581 + 0.998i)T \) |
| 71 | \( 1 + (-0.173 + 0.984i)T \) |
| 73 | \( 1 + (0.173 + 0.984i)T \) |
| 79 | \( 1 + (0.893 + 0.448i)T \) |
| 83 | \( 1 + (-0.893 - 0.448i)T \) |
| 89 | \( 1 + (-0.173 - 0.984i)T \) |
| 97 | \( 1 + (-0.286 + 0.957i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−30.00299828116942826687522153525, −29.07090643987147045323368382167, −28.18114422398738147895691098562, −27.097330897586450056114246983, −26.2152857129295422291071553453, −25.077971129645896155096321053460, −23.992992913874973910573512535827, −23.44073831568712240097435586132, −21.29446079363915736186468340494, −20.48139964339661762473508761244, −19.40278547284616877188519419175, −18.16808314634428468661153430705, −16.85495111263874114706927363318, −16.581420856404359545057294979614, −14.971053940012342628798220131, −13.77931062745880066719479157495, −12.30511297087542320233750378267, −10.710087142449619672726673602066, −9.77997679705889431461531773990, −8.39624904373662494739136015968, −7.50768636320174443487761856854, −5.878995750132867493563806061036, −4.56209655633493851588308370735, −1.97163382437959541489775673631, −0.38632953336235967432726825018,
2.0802693532948631044719919276, 3.096617172885854722053188360556, 5.45407638974052896638911793730, 7.10901284861331844965300726098, 8.17028679423323688195563145803, 9.65300584182294955477748365550, 10.57588089487596808117121760751, 11.73970095406688931223384541186, 12.914076205655575175036423796062, 14.71558216150489608501368412258, 15.64157308430505904690158194864, 17.20526739270682374659975252865, 18.22428711711006227825038481895, 18.79864653841362485324523560823, 20.128333608902480064289688133952, 21.451719073328169945505927399734, 22.009523316760893387055911829126, 23.641997686286220823444532872021, 25.27195279431551182581711282701, 25.717391275924700721609423621903, 27.040428612652859484398072898971, 27.79796739434868899222903450370, 29.02879909483027524611458743688, 29.84902327988469487321507677625, 30.851386484322309000471364272151