L(s) = 1 | + (0.835 + 0.549i)2-s + (0.396 + 0.918i)4-s + (0.686 + 0.727i)5-s + (−0.993 + 0.116i)7-s + (−0.173 + 0.984i)8-s + (0.173 + 0.984i)10-s + (0.286 + 0.957i)11-s + (−0.0581 − 0.998i)13-s + (−0.893 − 0.448i)14-s + (−0.686 + 0.727i)16-s + (0.939 + 0.342i)17-s + (−0.939 + 0.342i)19-s + (−0.396 + 0.918i)20-s + (−0.286 + 0.957i)22-s + (0.993 + 0.116i)23-s + ⋯ |
L(s) = 1 | + (0.835 + 0.549i)2-s + (0.396 + 0.918i)4-s + (0.686 + 0.727i)5-s + (−0.993 + 0.116i)7-s + (−0.173 + 0.984i)8-s + (0.173 + 0.984i)10-s + (0.286 + 0.957i)11-s + (−0.0581 − 0.998i)13-s + (−0.893 − 0.448i)14-s + (−0.686 + 0.727i)16-s + (0.939 + 0.342i)17-s + (−0.939 + 0.342i)19-s + (−0.396 + 0.918i)20-s + (−0.286 + 0.957i)22-s + (0.993 + 0.116i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.413 + 0.910i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.413 + 0.910i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.402576752 + 2.178228007i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.402576752 + 2.178228007i\) |
\(L(1)\) |
\(\approx\) |
\(1.424728376 + 0.9864647860i\) |
\(L(1)\) |
\(\approx\) |
\(1.424728376 + 0.9864647860i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
good | 2 | \( 1 + (0.835 + 0.549i)T \) |
| 5 | \( 1 + (0.686 + 0.727i)T \) |
| 7 | \( 1 + (-0.993 + 0.116i)T \) |
| 11 | \( 1 + (0.286 + 0.957i)T \) |
| 13 | \( 1 + (-0.0581 - 0.998i)T \) |
| 17 | \( 1 + (0.939 + 0.342i)T \) |
| 19 | \( 1 + (-0.939 + 0.342i)T \) |
| 23 | \( 1 + (0.993 + 0.116i)T \) |
| 29 | \( 1 + (-0.893 + 0.448i)T \) |
| 31 | \( 1 + (0.597 - 0.802i)T \) |
| 37 | \( 1 + (0.766 - 0.642i)T \) |
| 41 | \( 1 + (0.835 - 0.549i)T \) |
| 43 | \( 1 + (0.973 + 0.230i)T \) |
| 47 | \( 1 + (-0.597 - 0.802i)T \) |
| 53 | \( 1 + (0.5 + 0.866i)T \) |
| 59 | \( 1 + (0.286 - 0.957i)T \) |
| 61 | \( 1 + (0.396 - 0.918i)T \) |
| 67 | \( 1 + (0.893 + 0.448i)T \) |
| 71 | \( 1 + (-0.173 - 0.984i)T \) |
| 73 | \( 1 + (0.173 - 0.984i)T \) |
| 79 | \( 1 + (-0.835 - 0.549i)T \) |
| 83 | \( 1 + (0.835 + 0.549i)T \) |
| 89 | \( 1 + (-0.173 + 0.984i)T \) |
| 97 | \( 1 + (-0.686 + 0.727i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−30.26174555158198949702583090196, −29.25814586698992648292809329498, −28.77244550738361071484568403848, −27.52432808924912617844685021482, −25.902341354888534876536073894689, −24.83376230700622752125413089526, −23.861070545368515419228886582169, −22.76260815511828960162373702475, −21.565989914840699157463571722949, −20.9704647138325722658982135582, −19.56188095223965592853675707073, −18.84110826473488276677965157952, −16.87782043005642060893956361671, −16.09421629229657639692170988042, −14.464279439936236135852200825101, −13.44780354925966402474786135781, −12.64895737319117713765552263910, −11.3649914832089562019257652482, −9.94121418748831477506142600099, −8.98949800879504353476493210319, −6.666624887796329505546331749075, −5.669428276333028165983680818479, −4.22834676465989006836272105036, −2.74788646879065121450699466502, −0.99905240213455685257163105992,
2.46008071686450395985394139731, 3.7023427178147797484536959100, 5.51512129603439117369194469764, 6.48899332106191463483099980223, 7.61091702086558433545472806666, 9.46321995674256930061274779133, 10.727187826967977314706697634032, 12.46939411840985545705908473809, 13.15595313677111674719219945772, 14.59508075696443180101413977483, 15.25237744646812833477885277429, 16.72193099233670147002327997032, 17.637167479907422425548431976581, 19.065137916741682596572678061878, 20.52893350575259303513326889263, 21.64707829811456804742938736013, 22.69537818074073384689811433357, 23.14671716916319761612973969318, 24.95003823362565611279097854038, 25.52167360050350290841611288498, 26.3167539868539417738444804048, 27.90272768680826520098807350356, 29.48766994442803375981870778627, 29.96172059860744285815638646448, 31.16751736275198203483628185985