L(s) = 1 | + (0.597 − 0.802i)2-s + (−0.286 − 0.957i)4-s + (−0.835 − 0.549i)5-s + (−0.686 − 0.727i)7-s + (−0.939 − 0.342i)8-s + (−0.939 + 0.342i)10-s + (0.893 + 0.448i)11-s + (0.396 − 0.918i)13-s + (−0.993 + 0.116i)14-s + (−0.835 + 0.549i)16-s + (0.766 + 0.642i)17-s + (0.766 − 0.642i)19-s + (−0.286 + 0.957i)20-s + (0.893 − 0.448i)22-s + (−0.686 + 0.727i)23-s + ⋯ |
L(s) = 1 | + (0.597 − 0.802i)2-s + (−0.286 − 0.957i)4-s + (−0.835 − 0.549i)5-s + (−0.686 − 0.727i)7-s + (−0.939 − 0.342i)8-s + (−0.939 + 0.342i)10-s + (0.893 + 0.448i)11-s + (0.396 − 0.918i)13-s + (−0.993 + 0.116i)14-s + (−0.835 + 0.549i)16-s + (0.766 + 0.642i)17-s + (0.766 − 0.642i)19-s + (−0.286 + 0.957i)20-s + (0.893 − 0.448i)22-s + (−0.686 + 0.727i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.565 - 0.824i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.565 - 0.824i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4826478108 - 0.9162842663i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4826478108 - 0.9162842663i\) |
\(L(1)\) |
\(\approx\) |
\(0.8578892379 - 0.7207410342i\) |
\(L(1)\) |
\(\approx\) |
\(0.8578892379 - 0.7207410342i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
good | 2 | \( 1 + (0.597 - 0.802i)T \) |
| 5 | \( 1 + (-0.835 - 0.549i)T \) |
| 7 | \( 1 + (-0.686 - 0.727i)T \) |
| 11 | \( 1 + (0.893 + 0.448i)T \) |
| 13 | \( 1 + (0.396 - 0.918i)T \) |
| 17 | \( 1 + (0.766 + 0.642i)T \) |
| 19 | \( 1 + (0.766 - 0.642i)T \) |
| 23 | \( 1 + (-0.686 + 0.727i)T \) |
| 29 | \( 1 + (-0.993 - 0.116i)T \) |
| 31 | \( 1 + (0.973 + 0.230i)T \) |
| 37 | \( 1 + (0.173 - 0.984i)T \) |
| 41 | \( 1 + (0.597 + 0.802i)T \) |
| 43 | \( 1 + (-0.0581 - 0.998i)T \) |
| 47 | \( 1 + (0.973 - 0.230i)T \) |
| 53 | \( 1 + (-0.5 + 0.866i)T \) |
| 59 | \( 1 + (0.893 - 0.448i)T \) |
| 61 | \( 1 + (-0.286 + 0.957i)T \) |
| 67 | \( 1 + (-0.993 + 0.116i)T \) |
| 71 | \( 1 + (-0.939 + 0.342i)T \) |
| 73 | \( 1 + (-0.939 - 0.342i)T \) |
| 79 | \( 1 + (0.597 - 0.802i)T \) |
| 83 | \( 1 + (0.597 - 0.802i)T \) |
| 89 | \( 1 + (-0.939 - 0.342i)T \) |
| 97 | \( 1 + (-0.835 + 0.549i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−31.529969382680999141835040836873, −30.61886324473565805717498373058, −29.54402908794323927457068197536, −27.968281232716587408494634485788, −26.8467174952329137781941871021, −25.962538836541524338886622714006, −24.87022982538840632287495775116, −23.87523795283431177074801697603, −22.63842288302951035654969962929, −22.203702134077361894041331788167, −20.770075475387497822753640424769, −19.139947646283328146047999569449, −18.354992261008573410364985159802, −16.56882151221462062886526320164, −15.97083311149643414910913605713, −14.740545401410681514594137991546, −13.86169700705260880860854258216, −12.23246317873356635297210428624, −11.5787876110271670964739964773, −9.45386826804587927242220334923, −8.18906693073036944198462769328, −6.87027268007125274325310199269, −5.89569063270494279604925241259, −4.11463248023534037973483374007, −3.04450904163407750102405370090,
1.0818412953131287762149612073, 3.35749710995763315756379212740, 4.22309363683394877779956355808, 5.79800777997070160672523305999, 7.46563314459582469929018112729, 9.17870438646454998304589557674, 10.34906793113130124209643173893, 11.655294419898429544911897041762, 12.60945444162282599741548495721, 13.61499647094199702322243009472, 15.00197310359883742722795300261, 16.088380540080799727849770277043, 17.5249873734496733431229487598, 19.16209853167684382869557633600, 19.909483634010842985243713340792, 20.60587461249004821096378759863, 22.15552574880729659615316446549, 23.02909675410983724770221974557, 23.81108285757371470804134192804, 25.07760406719390940907678064919, 26.652339806980353309065369961082, 27.83911599468915298663153478143, 28.40337615694487148605368064359, 29.94324341847735918850478998785, 30.37834859710089003017769799879