L(s) = 1 | + (−0.973 + 0.230i)2-s + (0.893 − 0.448i)4-s + (−0.597 − 0.802i)5-s + (−0.835 + 0.549i)7-s + (−0.766 + 0.642i)8-s + (0.766 + 0.642i)10-s + (0.993 + 0.116i)11-s + (−0.286 − 0.957i)13-s + (0.686 − 0.727i)14-s + (0.597 − 0.802i)16-s + (−0.173 + 0.984i)17-s + (0.173 + 0.984i)19-s + (−0.893 − 0.448i)20-s + (−0.993 + 0.116i)22-s + (0.835 + 0.549i)23-s + ⋯ |
L(s) = 1 | + (−0.973 + 0.230i)2-s + (0.893 − 0.448i)4-s + (−0.597 − 0.802i)5-s + (−0.835 + 0.549i)7-s + (−0.766 + 0.642i)8-s + (0.766 + 0.642i)10-s + (0.993 + 0.116i)11-s + (−0.286 − 0.957i)13-s + (0.686 − 0.727i)14-s + (0.597 − 0.802i)16-s + (−0.173 + 0.984i)17-s + (0.173 + 0.984i)19-s + (−0.893 − 0.448i)20-s + (−0.993 + 0.116i)22-s + (0.835 + 0.549i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.0774 + 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.0774 + 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4656870131 + 0.4308955274i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4656870131 + 0.4308955274i\) |
\(L(1)\) |
\(\approx\) |
\(0.5808460461 + 0.1041414149i\) |
\(L(1)\) |
\(\approx\) |
\(0.5808460461 + 0.1041414149i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
good | 2 | \( 1 + (-0.973 + 0.230i)T \) |
| 5 | \( 1 + (-0.597 - 0.802i)T \) |
| 7 | \( 1 + (-0.835 + 0.549i)T \) |
| 11 | \( 1 + (0.993 + 0.116i)T \) |
| 13 | \( 1 + (-0.286 - 0.957i)T \) |
| 17 | \( 1 + (-0.173 + 0.984i)T \) |
| 19 | \( 1 + (0.173 + 0.984i)T \) |
| 23 | \( 1 + (0.835 + 0.549i)T \) |
| 29 | \( 1 + (0.686 + 0.727i)T \) |
| 31 | \( 1 + (-0.0581 + 0.998i)T \) |
| 37 | \( 1 + (-0.939 + 0.342i)T \) |
| 41 | \( 1 + (-0.973 - 0.230i)T \) |
| 43 | \( 1 + (0.396 + 0.918i)T \) |
| 47 | \( 1 + (0.0581 + 0.998i)T \) |
| 53 | \( 1 + (0.5 - 0.866i)T \) |
| 59 | \( 1 + (0.993 - 0.116i)T \) |
| 61 | \( 1 + (0.893 + 0.448i)T \) |
| 67 | \( 1 + (-0.686 + 0.727i)T \) |
| 71 | \( 1 + (-0.766 - 0.642i)T \) |
| 73 | \( 1 + (0.766 - 0.642i)T \) |
| 79 | \( 1 + (0.973 - 0.230i)T \) |
| 83 | \( 1 + (-0.973 + 0.230i)T \) |
| 89 | \( 1 + (-0.766 + 0.642i)T \) |
| 97 | \( 1 + (0.597 - 0.802i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−30.19295703671415166800605518309, −29.4126457107003429488251723219, −28.33660667866532159087900785138, −27.000773235509840306235729597885, −26.55871767296143453279133441283, −25.47463594415867221111317897383, −24.23193365891412757626175752847, −22.817444586295714735177250326264, −21.85121195275211532384852473447, −20.3011744463780849998343112275, −19.37861357783718919602692811875, −18.739076143765468359148293153142, −17.30101868650952083126554772907, −16.335653018941382039137201594747, −15.24081251031195343361343820197, −13.773513334231663183997066704399, −12.01788426885772688301747964994, −11.18793770681467739924534401039, −9.920770046737402818809600396338, −8.874514283956151019938281116690, −7.12354937666257815682999937456, −6.6997072472670195309968164198, −3.95137749682736156255856100295, −2.634989390469915839276864369750, −0.4604457722832379862233535522,
1.29471186090680582148909037649, 3.36953086564640590190026969635, 5.44561585315834121961524148105, 6.792766114450954548184238594807, 8.232778670934446672099159990394, 9.111783387269680233214474237503, 10.31117993015635407413054770479, 11.87267158796202334141974588799, 12.71210031901972427759385932847, 14.78892341726475106780941346470, 15.76888690148774708064686859638, 16.70179171026017669409837453189, 17.7144497944214960594953273609, 19.28267653100167861030130156704, 19.66739355025317910818936998580, 20.91960094895817131156199163575, 22.47320210354900780958223340089, 23.74071791867069206485832361565, 24.94599598428376042621102436616, 25.44910177709358242162416168161, 27.01735317518766425151033596199, 27.68604392379433547451916600069, 28.65275023707365828662525020366, 29.56830442460933496230653411681, 30.99039115132645279243600790272