L(s) = 1 | + (0.993 + 0.116i)2-s + (0.973 + 0.230i)4-s + (−0.893 + 0.448i)5-s + (−0.286 + 0.957i)7-s + (0.939 + 0.342i)8-s + (−0.939 + 0.342i)10-s + (0.0581 + 0.998i)11-s + (0.597 + 0.802i)13-s + (−0.396 + 0.918i)14-s + (0.893 + 0.448i)16-s + (−0.766 − 0.642i)17-s + (0.766 − 0.642i)19-s + (−0.973 + 0.230i)20-s + (−0.0581 + 0.998i)22-s + (0.286 + 0.957i)23-s + ⋯ |
L(s) = 1 | + (0.993 + 0.116i)2-s + (0.973 + 0.230i)4-s + (−0.893 + 0.448i)5-s + (−0.286 + 0.957i)7-s + (0.939 + 0.342i)8-s + (−0.939 + 0.342i)10-s + (0.0581 + 0.998i)11-s + (0.597 + 0.802i)13-s + (−0.396 + 0.918i)14-s + (0.893 + 0.448i)16-s + (−0.766 − 0.642i)17-s + (0.766 − 0.642i)19-s + (−0.973 + 0.230i)20-s + (−0.0581 + 0.998i)22-s + (0.286 + 0.957i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.0774 + 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.0774 + 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.848843710 + 1.710716560i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.848843710 + 1.710716560i\) |
\(L(1)\) |
\(\approx\) |
\(1.583719281 + 0.6451750321i\) |
\(L(1)\) |
\(\approx\) |
\(1.583719281 + 0.6451750321i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
good | 2 | \( 1 + (0.993 + 0.116i)T \) |
| 5 | \( 1 + (-0.893 + 0.448i)T \) |
| 7 | \( 1 + (-0.286 + 0.957i)T \) |
| 11 | \( 1 + (0.0581 + 0.998i)T \) |
| 13 | \( 1 + (0.597 + 0.802i)T \) |
| 17 | \( 1 + (-0.766 - 0.642i)T \) |
| 19 | \( 1 + (0.766 - 0.642i)T \) |
| 23 | \( 1 + (0.286 + 0.957i)T \) |
| 29 | \( 1 + (-0.396 - 0.918i)T \) |
| 31 | \( 1 + (-0.686 + 0.727i)T \) |
| 37 | \( 1 + (0.173 - 0.984i)T \) |
| 41 | \( 1 + (0.993 - 0.116i)T \) |
| 43 | \( 1 + (-0.835 + 0.549i)T \) |
| 47 | \( 1 + (0.686 + 0.727i)T \) |
| 53 | \( 1 + (0.5 - 0.866i)T \) |
| 59 | \( 1 + (0.0581 - 0.998i)T \) |
| 61 | \( 1 + (0.973 - 0.230i)T \) |
| 67 | \( 1 + (0.396 - 0.918i)T \) |
| 71 | \( 1 + (0.939 - 0.342i)T \) |
| 73 | \( 1 + (-0.939 - 0.342i)T \) |
| 79 | \( 1 + (-0.993 - 0.116i)T \) |
| 83 | \( 1 + (0.993 + 0.116i)T \) |
| 89 | \( 1 + (0.939 + 0.342i)T \) |
| 97 | \( 1 + (0.893 + 0.448i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−30.61732160071197634959115044702, −29.62827629096155646920515331992, −28.62640008449547450216894333140, −27.32395444338298043241523725259, −26.20134496227586264374269340131, −24.70808826309106549425186089432, −23.884689410550679585418797054524, −23.02148465984601937694208590542, −22.05455928864801591720946426943, −20.50513258777255337742176360230, −20.05984723004873252870623743130, −18.80265924307911258760513030274, −16.76858781866752450559198034765, −16.062965331509978304945252309575, −14.87783891408414156263988340088, −13.54200042207455506518458823916, −12.727439742853857203694108148242, −11.36070515787223163610291844654, −10.496372917462951089714435559516, −8.40126849345515229312689265224, −7.14432227340988677431811001221, −5.71757214299450011088698620105, −4.183469049991924482277258666254, −3.30285053937033776856161020056, −0.926066688338556489881723628874,
2.29940902779348274515744147746, 3.6848892326199020627740814617, 4.99592982556053768537266030424, 6.54477574649406860485817991392, 7.5360141378229731459374079026, 9.26364489073429849872837607201, 11.19072795335627318008666467043, 11.86969916014745243039454937512, 13.05998858621189422897052326201, 14.433955702377174041962718389957, 15.5082717229088148294804748126, 16.040646448909481252404601085571, 17.89701178951059577489916719702, 19.236984273318968566179848040873, 20.21974797166535372019214424060, 21.52371624961276425253480376478, 22.52120545584238444052120869884, 23.27375352019805296186151568228, 24.41238471994531314142451460630, 25.485968285938680184901628578635, 26.49239993547263245093972098447, 28.065345253125059032246062295877, 28.91058609975304961400573301946, 30.380902076955257586495721970224, 31.122191471746341447896499556287