L(s) = 1 | + (0.173 − 0.984i)2-s + (−0.939 − 0.342i)4-s + (0.766 − 0.642i)5-s + (−0.939 + 0.342i)7-s + (−0.5 + 0.866i)8-s + (−0.5 − 0.866i)10-s + (0.766 + 0.642i)11-s + (0.173 + 0.984i)13-s + (0.173 + 0.984i)14-s + (0.766 + 0.642i)16-s + (−0.5 − 0.866i)17-s + (−0.5 + 0.866i)19-s + (−0.939 + 0.342i)20-s + (0.766 − 0.642i)22-s + (−0.939 − 0.342i)23-s + ⋯ |
L(s) = 1 | + (0.173 − 0.984i)2-s + (−0.939 − 0.342i)4-s + (0.766 − 0.642i)5-s + (−0.939 + 0.342i)7-s + (−0.5 + 0.866i)8-s + (−0.5 − 0.866i)10-s + (0.766 + 0.642i)11-s + (0.173 + 0.984i)13-s + (0.173 + 0.984i)14-s + (0.766 + 0.642i)16-s + (−0.5 − 0.866i)17-s + (−0.5 + 0.866i)19-s + (−0.939 + 0.342i)20-s + (0.766 − 0.642i)22-s + (−0.939 − 0.342i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.230 - 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.230 - 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5864441141 - 0.4636998845i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5864441141 - 0.4636998845i\) |
\(L(1)\) |
\(\approx\) |
\(0.8427329235 - 0.4707643909i\) |
\(L(1)\) |
\(\approx\) |
\(0.8427329235 - 0.4707643909i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
good | 2 | \( 1 + (0.173 - 0.984i)T \) |
| 5 | \( 1 + (0.766 - 0.642i)T \) |
| 7 | \( 1 + (-0.939 + 0.342i)T \) |
| 11 | \( 1 + (0.766 + 0.642i)T \) |
| 13 | \( 1 + (0.173 + 0.984i)T \) |
| 17 | \( 1 + (-0.5 - 0.866i)T \) |
| 19 | \( 1 + (-0.5 + 0.866i)T \) |
| 23 | \( 1 + (-0.939 - 0.342i)T \) |
| 29 | \( 1 + (0.173 - 0.984i)T \) |
| 31 | \( 1 + (-0.939 - 0.342i)T \) |
| 37 | \( 1 + (-0.5 - 0.866i)T \) |
| 41 | \( 1 + (0.173 + 0.984i)T \) |
| 43 | \( 1 + (0.766 + 0.642i)T \) |
| 47 | \( 1 + (-0.939 + 0.342i)T \) |
| 53 | \( 1 + T \) |
| 59 | \( 1 + (0.766 - 0.642i)T \) |
| 61 | \( 1 + (-0.939 + 0.342i)T \) |
| 67 | \( 1 + (0.173 + 0.984i)T \) |
| 71 | \( 1 + (-0.5 - 0.866i)T \) |
| 73 | \( 1 + (-0.5 + 0.866i)T \) |
| 79 | \( 1 + (0.173 - 0.984i)T \) |
| 83 | \( 1 + (0.173 - 0.984i)T \) |
| 89 | \( 1 + (-0.5 + 0.866i)T \) |
| 97 | \( 1 + (0.766 + 0.642i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−37.90317748619161782170449268181, −36.6749197804418468982121865463, −35.29535114844820265659073307784, −34.388355675025192957880332392606, −32.848376770172237125898598545783, −32.429820614659926591330357523629, −30.56288175259935588474263260321, −29.43591271873541447139070754659, −27.59552286596135926477831038659, −26.14910938770239339712457551788, −25.48689432617047355463403256918, −24.020638462668331218531831734714, −22.514398106655226045878026890315, −21.80544909324418429039844859308, −19.52558615072679607799181230122, −17.98066168625784950975071409847, −16.86548122591468243909404774192, −15.39807568411316693714823259329, −13.993766917902001250790143652743, −12.9156156312229036216898190000, −10.407662944348542994807060476686, −8.890356909867259833440304182087, −6.9000338510018832653850192661, −5.845991025159952441041195618561, −3.51591294158896197287077315224,
2.06798021116922394942160955910, 4.2495330971972226603620081109, 6.11462586364526593506523367458, 9.03127531541962678034631241343, 9.87536732274703710343140532294, 11.87522622421689831252737256398, 13.00007918159710167639789411203, 14.29464831064455455971039064721, 16.46375089540683759948909763622, 17.98583564836765856291709864755, 19.395605517348846220190297732761, 20.617155414677183501939128501133, 21.8326294761811823189568089601, 22.93938639134165655027519123479, 24.68670713132286106213894065078, 26.11423057552191493523360971159, 27.848567299870614307616963908205, 28.80686862932710188919027788825, 29.71148696724070565443330919075, 31.28632447054244060364686848212, 32.30414487371379749627334556962, 33.42085692277663973916079217459, 35.69894159792211780149762288776, 36.24787188861703270843351123143, 37.8812762299544340837531002367