Properties

Label 1-380-380.379-r0-0-0
Degree $1$
Conductor $380$
Sign $1$
Analytic cond. $1.76471$
Root an. cond. $1.76471$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 7-s + 9-s − 11-s + 13-s − 17-s − 21-s + 23-s − 27-s − 29-s + 31-s + 33-s + 37-s − 39-s − 41-s + 43-s + 47-s + 49-s + 51-s + 53-s + 59-s + 61-s + 63-s − 67-s − 69-s + 71-s − 73-s + ⋯
L(s)  = 1  − 3-s + 7-s + 9-s − 11-s + 13-s − 17-s − 21-s + 23-s − 27-s − 29-s + 31-s + 33-s + 37-s − 39-s − 41-s + 43-s + 47-s + 49-s + 51-s + 53-s + 59-s + 61-s + 63-s − 67-s − 69-s + 71-s − 73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 380 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 380 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(380\)    =    \(2^{2} \cdot 5 \cdot 19\)
Sign: $1$
Analytic conductor: \(1.76471\)
Root analytic conductor: \(1.76471\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{380} (379, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((1,\ 380,\ (0:\ ),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.026363169\)
\(L(\frac12)\) \(\approx\) \(1.026363169\)
\(L(1)\) \(\approx\) \(0.8939440530\)
\(L(1)\) \(\approx\) \(0.8939440530\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
19 \( 1 \)
good3 \( 1 - T \)
7 \( 1 + T \)
11 \( 1 - T \)
13 \( 1 + T \)
17 \( 1 - T \)
23 \( 1 + T \)
29 \( 1 - T \)
31 \( 1 + T \)
37 \( 1 + T \)
41 \( 1 - T \)
43 \( 1 + T \)
47 \( 1 + T \)
53 \( 1 + T \)
59 \( 1 + T \)
61 \( 1 + T \)
67 \( 1 - T \)
71 \( 1 + T \)
73 \( 1 - T \)
79 \( 1 + T \)
83 \( 1 + T \)
89 \( 1 - T \)
97 \( 1 + T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−24.26803349235082566902014341649, −23.68744571912713879965382467033, −22.927624764457365140888182097444, −21.96584427320489311321974889959, −21.04189927040236197438724580006, −20.54025372934600249548169557650, −18.98604967176938932496829954784, −18.215699705731517176112656661257, −17.61594159804548784158803326780, −16.69136411273428757781121040896, −15.686670909534621716029584998072, −15.04125605012948133885270202781, −13.57469839645539401504365027176, −12.954783842613575420119410424243, −11.69761462007320007733512830437, −11.03592307182931153725036293892, −10.39321143800167989689554989531, −8.98446163993967406087226796894, −7.93183531466716919920684097187, −6.92532686274331445064505463953, −5.79445829465544870140371708503, −4.98039999099752026737427355448, −4.03794531127032443628703529221, −2.31710381040277474888182916785, −0.99769864034816801341756551625, 0.99769864034816801341756551625, 2.31710381040277474888182916785, 4.03794531127032443628703529221, 4.98039999099752026737427355448, 5.79445829465544870140371708503, 6.92532686274331445064505463953, 7.93183531466716919920684097187, 8.98446163993967406087226796894, 10.39321143800167989689554989531, 11.03592307182931153725036293892, 11.69761462007320007733512830437, 12.954783842613575420119410424243, 13.57469839645539401504365027176, 15.04125605012948133885270202781, 15.686670909534621716029584998072, 16.69136411273428757781121040896, 17.61594159804548784158803326780, 18.215699705731517176112656661257, 18.98604967176938932496829954784, 20.54025372934600249548169557650, 21.04189927040236197438724580006, 21.96584427320489311321974889959, 22.927624764457365140888182097444, 23.68744571912713879965382467033, 24.26803349235082566902014341649

Graph of the $Z$-function along the critical line