L(s) = 1 | + (0.342 − 0.939i)2-s + (0.939 − 0.342i)3-s + (−0.766 − 0.642i)4-s + (−0.984 − 0.173i)5-s − i·6-s + (0.173 − 0.984i)7-s + (−0.866 + 0.5i)8-s + (0.766 − 0.642i)9-s + (−0.5 + 0.866i)10-s + (0.5 + 0.866i)11-s + (−0.939 − 0.342i)12-s + (0.642 − 0.766i)13-s + (−0.866 − 0.5i)14-s + (−0.984 + 0.173i)15-s + (0.173 + 0.984i)16-s + (−0.642 − 0.766i)17-s + ⋯ |
L(s) = 1 | + (0.342 − 0.939i)2-s + (0.939 − 0.342i)3-s + (−0.766 − 0.642i)4-s + (−0.984 − 0.173i)5-s − i·6-s + (0.173 − 0.984i)7-s + (−0.866 + 0.5i)8-s + (0.766 − 0.642i)9-s + (−0.5 + 0.866i)10-s + (0.5 + 0.866i)11-s + (−0.939 − 0.342i)12-s + (0.642 − 0.766i)13-s + (−0.866 − 0.5i)14-s + (−0.984 + 0.173i)15-s + (0.173 + 0.984i)16-s + (−0.642 − 0.766i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 37 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.660 - 0.750i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 37 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.660 - 0.750i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7564683355 - 1.673815789i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7564683355 - 1.673815789i\) |
\(L(1)\) |
\(\approx\) |
\(1.015147515 - 0.9818307121i\) |
\(L(1)\) |
\(\approx\) |
\(1.015147515 - 0.9818307121i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 37 | \( 1 \) |
good | 2 | \( 1 + (0.342 - 0.939i)T \) |
| 3 | \( 1 + (0.939 - 0.342i)T \) |
| 5 | \( 1 + (-0.984 - 0.173i)T \) |
| 7 | \( 1 + (0.173 - 0.984i)T \) |
| 11 | \( 1 + (0.5 + 0.866i)T \) |
| 13 | \( 1 + (0.642 - 0.766i)T \) |
| 17 | \( 1 + (-0.642 - 0.766i)T \) |
| 19 | \( 1 + (0.342 + 0.939i)T \) |
| 23 | \( 1 + (0.866 + 0.5i)T \) |
| 29 | \( 1 + (0.866 - 0.5i)T \) |
| 31 | \( 1 + iT \) |
| 41 | \( 1 + (-0.766 - 0.642i)T \) |
| 43 | \( 1 - iT \) |
| 47 | \( 1 + (-0.5 + 0.866i)T \) |
| 53 | \( 1 + (0.173 + 0.984i)T \) |
| 59 | \( 1 + (0.984 - 0.173i)T \) |
| 61 | \( 1 + (-0.642 + 0.766i)T \) |
| 67 | \( 1 + (-0.173 + 0.984i)T \) |
| 71 | \( 1 + (-0.939 + 0.342i)T \) |
| 73 | \( 1 - T \) |
| 79 | \( 1 + (-0.984 - 0.173i)T \) |
| 83 | \( 1 + (0.766 - 0.642i)T \) |
| 89 | \( 1 + (-0.984 + 0.173i)T \) |
| 97 | \( 1 + (0.866 + 0.5i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−35.359502632359574692593678789847, −34.71997973360964184245714604272, −33.184586240440370836792858764396, −32.12701887831331212666082874377, −31.1380625375602056802836574429, −30.57958287681499202423529579090, −28.0463478137535074194493113921, −26.919195227815399235557475391066, −26.07971372725131298767268919292, −24.74298342104429304967160817821, −23.89462698731843285570319576492, −22.22117626150558206577433198575, −21.30059246277823398291808515113, −19.473473443476041660440451931393, −18.45256202717593330557597103210, −16.39765654454672214920403784722, −15.428134084486678071854152526811, −14.57072171488544317729391461161, −13.16969929536678622285374273570, −11.4610146427074713986373146446, −8.961796068967260042001443202769, −8.32229269293700645031532367367, −6.63584535568942885536066099347, −4.57524480880217802038040952170, −3.21010262275403156185609803370,
1.16522894113028381975445888225, 3.30227895235670864254788167464, 4.43619135004768193727228844999, 7.25962849762197406814211802986, 8.71351546369410715614686632097, 10.2834510335644586059632850546, 11.855970235655716168020647997779, 13.09632692464006284739426796567, 14.26518007539070990492994889468, 15.52418267434890532479901858654, 17.79016324212032976681197919614, 19.19193669191332450071628461892, 20.18864339286686158872813949208, 20.693008254704323044457905034519, 22.777094710871939867269641334796, 23.58157860418742240724860017578, 25.03583355221465991216180294339, 26.83571365136709561290721753873, 27.47029753945624842981810421805, 29.16981271146755239471024702601, 30.49591145131593388868497436490, 30.909747524176755451025095053159, 32.18414728337101404069295175839, 33.1928308924250546297432037432, 35.61160908983845890411086493097