L(s) = 1 | + (0.984 + 0.173i)2-s + (−0.173 − 0.984i)3-s + (0.939 + 0.342i)4-s + (−0.642 − 0.766i)5-s − i·6-s + (0.766 − 0.642i)7-s + (0.866 + 0.5i)8-s + (−0.939 + 0.342i)9-s + (−0.5 − 0.866i)10-s + (0.5 − 0.866i)11-s + (0.173 − 0.984i)12-s + (−0.342 + 0.939i)13-s + (0.866 − 0.5i)14-s + (−0.642 + 0.766i)15-s + (0.766 + 0.642i)16-s + (0.342 + 0.939i)17-s + ⋯ |
L(s) = 1 | + (0.984 + 0.173i)2-s + (−0.173 − 0.984i)3-s + (0.939 + 0.342i)4-s + (−0.642 − 0.766i)5-s − i·6-s + (0.766 − 0.642i)7-s + (0.866 + 0.5i)8-s + (−0.939 + 0.342i)9-s + (−0.5 − 0.866i)10-s + (0.5 − 0.866i)11-s + (0.173 − 0.984i)12-s + (−0.342 + 0.939i)13-s + (0.866 − 0.5i)14-s + (−0.642 + 0.766i)15-s + (0.766 + 0.642i)16-s + (0.342 + 0.939i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 37 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.512 - 0.858i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 37 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.512 - 0.858i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.029642993 - 1.152418744i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.029642993 - 1.152418744i\) |
\(L(1)\) |
\(\approx\) |
\(1.653255768 - 0.5516078989i\) |
\(L(1)\) |
\(\approx\) |
\(1.653255768 - 0.5516078989i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 37 | \( 1 \) |
good | 2 | \( 1 + (0.984 + 0.173i)T \) |
| 3 | \( 1 + (-0.173 - 0.984i)T \) |
| 5 | \( 1 + (-0.642 - 0.766i)T \) |
| 7 | \( 1 + (0.766 - 0.642i)T \) |
| 11 | \( 1 + (0.5 - 0.866i)T \) |
| 13 | \( 1 + (-0.342 + 0.939i)T \) |
| 17 | \( 1 + (0.342 + 0.939i)T \) |
| 19 | \( 1 + (0.984 - 0.173i)T \) |
| 23 | \( 1 + (-0.866 + 0.5i)T \) |
| 29 | \( 1 + (-0.866 - 0.5i)T \) |
| 31 | \( 1 + iT \) |
| 41 | \( 1 + (0.939 + 0.342i)T \) |
| 43 | \( 1 - iT \) |
| 47 | \( 1 + (-0.5 - 0.866i)T \) |
| 53 | \( 1 + (0.766 + 0.642i)T \) |
| 59 | \( 1 + (0.642 - 0.766i)T \) |
| 61 | \( 1 + (0.342 - 0.939i)T \) |
| 67 | \( 1 + (-0.766 + 0.642i)T \) |
| 71 | \( 1 + (0.173 + 0.984i)T \) |
| 73 | \( 1 - T \) |
| 79 | \( 1 + (-0.642 - 0.766i)T \) |
| 83 | \( 1 + (-0.939 + 0.342i)T \) |
| 89 | \( 1 + (-0.642 + 0.766i)T \) |
| 97 | \( 1 + (-0.866 + 0.5i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−34.90401234442120974284536167365, −34.0319207799969995414873483877, −33.16197773794718088470250545720, −31.79727811854931525651258146105, −30.97933580011500989973550983735, −29.81784456905107429410710071583, −28.14411509315394186251331782393, −27.32681985525169004569146119512, −25.732087226723672724700472327219, −24.355143792537678502559069791500, −22.61350622655063081163567690176, −22.4337943871783468752265321123, −20.86155622401941499786307783068, −19.93159114567857326318758135216, −18.041822795539283489093770036115, −16.130916600865034769333087348662, −15.02499065131812529740285527919, −14.42247372080694615253223712934, −12.109676195511476677689243333766, −11.27300951889973917535260613660, −9.893761430538187515638509401235, −7.57307444164045909047947241601, −5.6387110901833294827214847638, −4.320472306279818767382239396817, −2.81510137788842592327727230104,
1.464309442509693827030654868096, 3.904718325418339776650738173407, 5.51917955363491889972675771657, 7.17943611923155048660068156458, 8.28910429531704823716689154774, 11.30886918557010907795247944203, 12.05835175025640528013488945652, 13.472970761409397868514957034955, 14.43271098264807754216196488123, 16.31796750974118115881309770767, 17.2562987088248078655300158787, 19.29617169491723829261100081393, 20.26166330137894580095685872659, 21.7146331793357576380902012780, 23.327743534559870533724622068408, 24.07364326019676342136346819837, 24.672714586227949795279618810907, 26.44954810403971653616269536635, 28.21880505494170342866723872618, 29.48118741899830929591542250185, 30.49289700059897324324187130127, 31.387207171522633674608902175, 32.56971375497625436208076869893, 33.975881811278088004903177203154, 34.98346255913779239230214836787