L(s) = 1 | + (−0.755 − 0.654i)3-s + (0.989 + 0.142i)5-s + (−0.415 − 0.909i)7-s + (0.142 + 0.989i)9-s + (0.281 + 0.959i)11-s + (0.909 + 0.415i)13-s + (−0.654 − 0.755i)15-s + (0.841 − 0.540i)17-s + (−0.540 + 0.841i)19-s + (−0.281 + 0.959i)21-s + (0.959 + 0.281i)25-s + (0.540 − 0.841i)27-s + (0.540 + 0.841i)29-s + (−0.654 − 0.755i)31-s + (0.415 − 0.909i)33-s + ⋯ |
L(s) = 1 | + (−0.755 − 0.654i)3-s + (0.989 + 0.142i)5-s + (−0.415 − 0.909i)7-s + (0.142 + 0.989i)9-s + (0.281 + 0.959i)11-s + (0.909 + 0.415i)13-s + (−0.654 − 0.755i)15-s + (0.841 − 0.540i)17-s + (−0.540 + 0.841i)19-s + (−0.281 + 0.959i)21-s + (0.959 + 0.281i)25-s + (0.540 − 0.841i)27-s + (0.540 + 0.841i)29-s + (−0.654 − 0.755i)31-s + (0.415 − 0.909i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 368 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.910 - 0.414i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 368 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.910 - 0.414i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.193751291 - 0.2590118631i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.193751291 - 0.2590118631i\) |
\(L(1)\) |
\(\approx\) |
\(1.015859781 - 0.1663605244i\) |
\(L(1)\) |
\(\approx\) |
\(1.015859781 - 0.1663605244i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 23 | \( 1 \) |
good | 3 | \( 1 + (-0.755 - 0.654i)T \) |
| 5 | \( 1 + (0.989 + 0.142i)T \) |
| 7 | \( 1 + (-0.415 - 0.909i)T \) |
| 11 | \( 1 + (0.281 + 0.959i)T \) |
| 13 | \( 1 + (0.909 + 0.415i)T \) |
| 17 | \( 1 + (0.841 - 0.540i)T \) |
| 19 | \( 1 + (-0.540 + 0.841i)T \) |
| 29 | \( 1 + (0.540 + 0.841i)T \) |
| 31 | \( 1 + (-0.654 - 0.755i)T \) |
| 37 | \( 1 + (-0.989 + 0.142i)T \) |
| 41 | \( 1 + (0.142 - 0.989i)T \) |
| 43 | \( 1 + (0.755 + 0.654i)T \) |
| 47 | \( 1 + T \) |
| 53 | \( 1 + (0.909 - 0.415i)T \) |
| 59 | \( 1 + (-0.909 - 0.415i)T \) |
| 61 | \( 1 + (0.755 - 0.654i)T \) |
| 67 | \( 1 + (0.281 - 0.959i)T \) |
| 71 | \( 1 + (0.959 + 0.281i)T \) |
| 73 | \( 1 + (-0.841 - 0.540i)T \) |
| 79 | \( 1 + (0.415 - 0.909i)T \) |
| 83 | \( 1 + (0.989 - 0.142i)T \) |
| 89 | \( 1 + (0.654 - 0.755i)T \) |
| 97 | \( 1 + (-0.142 + 0.989i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.7967010412535537896970154430, −23.75812118970021301732508542682, −22.826759272489448445169069671403, −21.83318794855933126954223876244, −21.512949025653454026985719734988, −20.70703853451983332370355607420, −19.30871089885728886395419762111, −18.37938719320017950635867734224, −17.56823009151106412303652811299, −16.72433027215483752175876921733, −15.93329199719624170760754360976, −15.09198802369340531458406460795, −13.94743185347206244293727725294, −12.924754575950449370037029032987, −12.064519022277541023218329944646, −10.95096835551389634454927120906, −10.23003620195033824359666760656, −9.14943959004118059719750843662, −8.56387011826508557695393815731, −6.602660912153015428003565758643, −5.85994594316633501970407193991, −5.337548414167224453676868043999, −3.849029927018281882972719552950, −2.72688173342709736890054689440, −1.08614117457175575492652438675,
1.1453638260178659412955029592, 2.08772695079734954235841807657, 3.730266847564758162476915870445, 5.0233480835417529953244609293, 6.0898551914162723298611031799, 6.80594422158828836379056921742, 7.65878776199945589682614825587, 9.17384569243865375917939634416, 10.22329686296302682044641749703, 10.80721985993721446494873801848, 12.11904547055211410884717587627, 12.875125835733035894984696431559, 13.77519779122973938851611050063, 14.42079443603022445566604285514, 16.04600821389959219463204363099, 16.83293393779245177823656809635, 17.456847567601877490785380593582, 18.35790160929993520463969133314, 19.06658205641835785169531337731, 20.31968957994857534301522433099, 21.06691874689230161024297473678, 22.21912817598177091246014584053, 22.96802199908747936355010464249, 23.5001937273281075802116070024, 24.6132133625317575034886801438