Properties

Label 1-35e2-1225.233-r1-0-0
Degree $1$
Conductor $1225$
Sign $-0.804 - 0.593i$
Analytic cond. $131.644$
Root an. cond. $131.644$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.967 − 0.251i)2-s + (0.379 − 0.925i)3-s + (0.873 − 0.486i)4-s + (0.134 − 0.990i)6-s + (0.722 − 0.691i)8-s + (−0.712 − 0.701i)9-s + (0.712 − 0.701i)11-s + (−0.119 − 0.992i)12-s + (0.998 − 0.0448i)13-s + (0.525 − 0.850i)16-s + (0.999 − 0.0149i)17-s + (−0.866 − 0.5i)18-s + (−0.669 + 0.743i)19-s + (0.512 − 0.858i)22-s + (−0.800 − 0.599i)23-s + (−0.365 − 0.930i)24-s + ⋯
L(s)  = 1  + (0.967 − 0.251i)2-s + (0.379 − 0.925i)3-s + (0.873 − 0.486i)4-s + (0.134 − 0.990i)6-s + (0.722 − 0.691i)8-s + (−0.712 − 0.701i)9-s + (0.712 − 0.701i)11-s + (−0.119 − 0.992i)12-s + (0.998 − 0.0448i)13-s + (0.525 − 0.850i)16-s + (0.999 − 0.0149i)17-s + (−0.866 − 0.5i)18-s + (−0.669 + 0.743i)19-s + (0.512 − 0.858i)22-s + (−0.800 − 0.599i)23-s + (−0.365 − 0.930i)24-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1225 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.804 - 0.593i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1225 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.804 - 0.593i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(1225\)    =    \(5^{2} \cdot 7^{2}\)
Sign: $-0.804 - 0.593i$
Analytic conductor: \(131.644\)
Root analytic conductor: \(131.644\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{1225} (233, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 1225,\ (1:\ ),\ -0.804 - 0.593i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.716526836 - 5.218340140i\)
\(L(\frac12)\) \(\approx\) \(1.716526836 - 5.218340140i\)
\(L(1)\) \(\approx\) \(1.893414118 - 1.470697687i\)
\(L(1)\) \(\approx\) \(1.893414118 - 1.470697687i\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
7 \( 1 \)
good2 \( 1 + (0.967 - 0.251i)T \)
3 \( 1 + (0.379 - 0.925i)T \)
11 \( 1 + (0.712 - 0.701i)T \)
13 \( 1 + (0.998 - 0.0448i)T \)
17 \( 1 + (0.999 - 0.0149i)T \)
19 \( 1 + (-0.669 + 0.743i)T \)
23 \( 1 + (-0.800 - 0.599i)T \)
29 \( 1 + (0.995 + 0.0896i)T \)
31 \( 1 + (-0.978 - 0.207i)T \)
37 \( 1 + (-0.119 - 0.992i)T \)
41 \( 1 + (0.983 + 0.178i)T \)
43 \( 1 + (0.433 - 0.900i)T \)
47 \( 1 + (-0.635 + 0.772i)T \)
53 \( 1 + (-0.486 - 0.873i)T \)
59 \( 1 + (0.999 + 0.0299i)T \)
61 \( 1 + (0.193 - 0.981i)T \)
67 \( 1 + (-0.207 + 0.978i)T \)
71 \( 1 + (0.858 + 0.512i)T \)
73 \( 1 + (0.538 - 0.842i)T \)
79 \( 1 + (0.978 - 0.207i)T \)
83 \( 1 + (-0.351 + 0.936i)T \)
89 \( 1 + (-0.887 + 0.460i)T \)
97 \( 1 + (-0.951 - 0.309i)T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−21.329068830039270526851842842612, −20.72507548477675112857294053792, −19.89982047546383485517339335686, −19.40790263881526644424625512548, −17.99022380433097059615789153979, −17.099870732924901141020128411, −16.38512602109096626772730878127, −15.71103490984956398318621596274, −15.039319336673857883612840423186, −14.3341776690846201326626779332, −13.74426739444145699028242532499, −12.816517290939909834264330044, −11.90010938840536887102537637247, −11.166958134363828637451525727234, −10.35675774802661154966591375517, −9.45218145074915992672612537663, −8.497362844410974445839209685578, −7.71793194261048680988676833226, −6.63789361691455592805328870083, −5.82784830665322265058236343305, −4.91645299296448385522689430098, −4.11731332923733758711416624430, −3.515104912379081697226984596573, −2.54454802156752766636054147754, −1.442798070020775631044340375751, 0.692028139448262658474492441303, 1.51933377304816963529896824890, 2.43942595409540397952323987219, 3.527613007771532956594542089322, 3.97118627222067223890152548703, 5.50895579769030098655309120959, 6.12519335070103770003494566409, 6.74962330579473873364544216292, 7.84468292145489143037626385350, 8.52110086618294329339326950336, 9.635340428347038849932064815350, 10.76005607885852283244286932082, 11.42680958968222801015093461424, 12.38114711125236864027799899171, 12.712635824425646059187298550730, 13.79960494167788965197323622202, 14.23640719335275856044245240741, 14.79294089752547201578958671667, 16.039197777752916132601676290075, 16.552752060959835012947971555599, 17.70353329727675403382624093794, 18.65406454402797594384164404843, 19.2017941215487682470066348282, 19.86905570736667094323362522885, 20.78016128275732844435133888006

Graph of the $Z$-function along the critical line