L(s) = 1 | + (0.0339 + 0.999i)2-s + (−0.997 + 0.0679i)4-s + (0.998 − 0.0543i)5-s + (−0.101 − 0.994i)8-s + (0.0882 + 0.996i)10-s + (−0.403 − 0.915i)11-s + (−0.0611 + 0.998i)13-s + (0.990 − 0.135i)16-s + (0.440 + 0.897i)17-s + (0.786 − 0.618i)19-s + (−0.992 + 0.122i)20-s + (0.900 − 0.433i)22-s + (0.994 − 0.108i)25-s + (−0.999 − 0.0271i)26-s + (−0.557 + 0.830i)29-s + ⋯ |
L(s) = 1 | + (0.0339 + 0.999i)2-s + (−0.997 + 0.0679i)4-s + (0.998 − 0.0543i)5-s + (−0.101 − 0.994i)8-s + (0.0882 + 0.996i)10-s + (−0.403 − 0.915i)11-s + (−0.0611 + 0.998i)13-s + (0.990 − 0.135i)16-s + (0.440 + 0.897i)17-s + (0.786 − 0.618i)19-s + (−0.992 + 0.122i)20-s + (0.900 − 0.433i)22-s + (0.994 − 0.108i)25-s + (−0.999 − 0.0271i)26-s + (−0.557 + 0.830i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3381 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.327 + 0.944i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3381 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.327 + 0.944i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.026164577 + 1.442044878i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.026164577 + 1.442044878i\) |
\(L(1)\) |
\(\approx\) |
\(0.9924065355 + 0.5938630875i\) |
\(L(1)\) |
\(\approx\) |
\(0.9924065355 + 0.5938630875i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
| 23 | \( 1 \) |
good | 2 | \( 1 + (0.0339 + 0.999i)T \) |
| 5 | \( 1 + (0.998 - 0.0543i)T \) |
| 11 | \( 1 + (-0.403 - 0.915i)T \) |
| 13 | \( 1 + (-0.0611 + 0.998i)T \) |
| 17 | \( 1 + (0.440 + 0.897i)T \) |
| 19 | \( 1 + (0.786 - 0.618i)T \) |
| 29 | \( 1 + (-0.557 + 0.830i)T \) |
| 31 | \( 1 + (-0.888 + 0.458i)T \) |
| 37 | \( 1 + (-0.938 - 0.346i)T \) |
| 41 | \( 1 + (0.452 - 0.891i)T \) |
| 43 | \( 1 + (-0.101 + 0.994i)T \) |
| 47 | \( 1 + (0.733 - 0.680i)T \) |
| 53 | \( 1 + (0.209 + 0.977i)T \) |
| 59 | \( 1 + (0.0882 + 0.996i)T \) |
| 61 | \( 1 + (0.476 - 0.879i)T \) |
| 67 | \( 1 + (0.327 + 0.945i)T \) |
| 71 | \( 1 + (-0.262 + 0.965i)T \) |
| 73 | \( 1 + (-0.568 + 0.822i)T \) |
| 79 | \( 1 + (-0.235 - 0.971i)T \) |
| 83 | \( 1 + (0.794 + 0.607i)T \) |
| 89 | \( 1 + (0.644 - 0.764i)T \) |
| 97 | \( 1 + (-0.415 - 0.909i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.41422621231354918758672232122, −18.15814700914930499611696512404, −17.44451804128177778741436524566, −16.841755251326592234990402084977, −15.82139225118013555228923737523, −14.886212365730049178982216300549, −14.330694123229489504860255652301, −13.51773465721815598554550756384, −13.06167165383617126925655150724, −12.330088509282692741360524186643, −11.70560364440505497590637586919, −10.72034190185492834371361110684, −10.1741246963036574289845757373, −9.62051521710529062015909115533, −9.09391234690688502298187504527, −7.947842754101478124543478342892, −7.41866572237879554218713513108, −6.19183641274683355555434746388, −5.2614157765492424298795744586, −5.09906809571574781874910582709, −3.85585765513576595460204497562, −3.05422113517062592931737879115, −2.3171326118786815165680017346, −1.638351798088032709459809630840, −0.60887762024374573442508870285,
0.95262767448994098094416188759, 1.87462462841830295998948501722, 3.0544390129149926189172744108, 3.84150571971917692597280605318, 4.83871225353029233014485679192, 5.615158690784292895151200599507, 5.92844898431836451352282255295, 6.96636474553017027672664760, 7.3894671109100775014744564316, 8.68319865672819817928067624014, 8.82742373278265898100685229681, 9.71199943896468995856917292110, 10.440601792742811250847311744699, 11.21733962219757115428035251751, 12.35619170877118644729144831473, 12.99172907237780836073972238935, 13.695245549651954446054432792682, 14.19750694494086954439298275614, 14.72760984778828625417142988223, 15.75178774514873772724181402927, 16.324638136883810887322269671417, 16.88459930180469164044297590593, 17.51799007394362568883376918254, 18.238309633222422778385469985164, 18.77867632887813300288848580580