L(s) = 1 | + (0.634 + 0.773i)2-s + (−0.195 + 0.980i)4-s + (0.155 + 0.987i)5-s + (−0.882 + 0.470i)8-s + (−0.665 + 0.746i)10-s + (0.209 + 0.977i)11-s + (0.0203 + 0.999i)13-s + (−0.923 − 0.384i)16-s + (−0.751 + 0.659i)17-s + (−0.0475 + 0.998i)19-s + (−0.999 − 0.0407i)20-s + (−0.623 + 0.781i)22-s + (−0.951 + 0.307i)25-s + (−0.760 + 0.649i)26-s + (−0.947 − 0.320i)29-s + ⋯ |
L(s) = 1 | + (0.634 + 0.773i)2-s + (−0.195 + 0.980i)4-s + (0.155 + 0.987i)5-s + (−0.882 + 0.470i)8-s + (−0.665 + 0.746i)10-s + (0.209 + 0.977i)11-s + (0.0203 + 0.999i)13-s + (−0.923 − 0.384i)16-s + (−0.751 + 0.659i)17-s + (−0.0475 + 0.998i)19-s + (−0.999 − 0.0407i)20-s + (−0.623 + 0.781i)22-s + (−0.951 + 0.307i)25-s + (−0.760 + 0.649i)26-s + (−0.947 − 0.320i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3381 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.468 - 0.883i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3381 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.468 - 0.883i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.8961396749 + 1.489856265i\) |
\(L(\frac12)\) |
\(\approx\) |
\(-0.8961396749 + 1.489856265i\) |
\(L(1)\) |
\(\approx\) |
\(0.7366281675 + 1.077545446i\) |
\(L(1)\) |
\(\approx\) |
\(0.7366281675 + 1.077545446i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
| 23 | \( 1 \) |
good | 2 | \( 1 + (0.634 + 0.773i)T \) |
| 5 | \( 1 + (0.155 + 0.987i)T \) |
| 11 | \( 1 + (0.209 + 0.977i)T \) |
| 13 | \( 1 + (0.0203 + 0.999i)T \) |
| 17 | \( 1 + (-0.751 + 0.659i)T \) |
| 19 | \( 1 + (-0.0475 + 0.998i)T \) |
| 29 | \( 1 + (-0.947 - 0.320i)T \) |
| 31 | \( 1 + (0.981 - 0.189i)T \) |
| 37 | \( 1 + (0.973 + 0.229i)T \) |
| 41 | \( 1 + (0.933 + 0.359i)T \) |
| 43 | \( 1 + (-0.882 - 0.470i)T \) |
| 47 | \( 1 + (-0.826 - 0.563i)T \) |
| 53 | \( 1 + (-0.694 + 0.719i)T \) |
| 59 | \( 1 + (-0.665 + 0.746i)T \) |
| 61 | \( 1 + (0.942 - 0.333i)T \) |
| 67 | \( 1 + (-0.723 + 0.690i)T \) |
| 71 | \( 1 + (0.818 - 0.574i)T \) |
| 73 | \( 1 + (0.999 - 0.0271i)T \) |
| 79 | \( 1 + (0.995 - 0.0950i)T \) |
| 83 | \( 1 + (-0.301 + 0.953i)T \) |
| 89 | \( 1 + (-0.802 - 0.596i)T \) |
| 97 | \( 1 + (0.142 - 0.989i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.368243424258570297720219075578, −17.80096172717798504981817560986, −17.03076695341899488085594460635, −16.05604682307610264676350861984, −15.65417519001338524318763563397, −14.76862317224681718227345452071, −13.95247977453392526283689603390, −13.23697755851885731295468929195, −12.98523096290549845981157832517, −12.135387183841373532276522291149, −11.25407309022759495683300857106, −10.99834522946334837071503863703, −9.85009542260485723687901412150, −9.30654152588034268138605087141, −8.627432787768431990773347977321, −7.83587644733115682262930804395, −6.58938915554512460982412637530, −5.9432367536450912992794446773, −5.101800083951977795806741707891, −4.68852839183250211097196021212, −3.70362992273734736399012256221, −2.940254301093693667713916222447, −2.137223449372517965045924758785, −1.04614656068401626503580944127, −0.426614636668664739828234340844,
1.78614339848561652607751979120, 2.38992842780481415757928870118, 3.44912456565183828029289116871, 4.14092192521862688207228197744, 4.72972073363293127404158937182, 5.93356150908721657326610182781, 6.35054321423145989368296450114, 7.040867273369970316704835427975, 7.68556567476228467605634900162, 8.466731027618693092750282570185, 9.458878184280675107215286695797, 10.00176569485963116915753070937, 11.10607908655862624884373965751, 11.6499649446940745335061764983, 12.451201806363875712010447133712, 13.175704012298669474451812123123, 13.935766149384402871725868275302, 14.48171503824631403073063438228, 15.14521197505968852339644970884, 15.503947359566391461925139902609, 16.66629809666246603016912829138, 16.98439748131881952334651512031, 17.9204727572770145884617425352, 18.33681492507561626686157769495, 19.179828801569220427504167921371