L(s) = 1 | + (0.352 − 0.935i)2-s + (−0.751 − 0.659i)4-s + (0.777 − 0.628i)5-s + (−0.882 + 0.470i)8-s + (−0.314 − 0.949i)10-s + (−0.951 − 0.307i)11-s + (0.0203 + 0.999i)13-s + (0.128 + 0.991i)16-s + (−0.195 − 0.980i)17-s + (0.888 − 0.458i)19-s + (−0.999 − 0.0407i)20-s + (−0.623 + 0.781i)22-s + (0.209 − 0.977i)25-s + (0.942 + 0.333i)26-s + (−0.947 − 0.320i)29-s + ⋯ |
L(s) = 1 | + (0.352 − 0.935i)2-s + (−0.751 − 0.659i)4-s + (0.777 − 0.628i)5-s + (−0.882 + 0.470i)8-s + (−0.314 − 0.949i)10-s + (−0.951 − 0.307i)11-s + (0.0203 + 0.999i)13-s + (0.128 + 0.991i)16-s + (−0.195 − 0.980i)17-s + (0.888 − 0.458i)19-s + (−0.999 − 0.0407i)20-s + (−0.623 + 0.781i)22-s + (0.209 − 0.977i)25-s + (0.942 + 0.333i)26-s + (−0.947 − 0.320i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3381 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.530 + 0.847i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3381 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.530 + 0.847i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.4075787941 - 0.7360991057i\) |
\(L(\frac12)\) |
\(\approx\) |
\(-0.4075787941 - 0.7360991057i\) |
\(L(1)\) |
\(\approx\) |
\(0.7705223146 - 0.7119383527i\) |
\(L(1)\) |
\(\approx\) |
\(0.7705223146 - 0.7119383527i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
| 23 | \( 1 \) |
good | 2 | \( 1 + (0.352 - 0.935i)T \) |
| 5 | \( 1 + (0.777 - 0.628i)T \) |
| 11 | \( 1 + (-0.951 - 0.307i)T \) |
| 13 | \( 1 + (0.0203 + 0.999i)T \) |
| 17 | \( 1 + (-0.195 - 0.980i)T \) |
| 19 | \( 1 + (0.888 - 0.458i)T \) |
| 29 | \( 1 + (-0.947 - 0.320i)T \) |
| 31 | \( 1 + (-0.327 + 0.945i)T \) |
| 37 | \( 1 + (-0.288 - 0.957i)T \) |
| 41 | \( 1 + (0.933 + 0.359i)T \) |
| 43 | \( 1 + (-0.882 - 0.470i)T \) |
| 47 | \( 1 + (-0.0747 + 0.997i)T \) |
| 53 | \( 1 + (-0.275 - 0.961i)T \) |
| 59 | \( 1 + (-0.314 - 0.949i)T \) |
| 61 | \( 1 + (-0.760 - 0.649i)T \) |
| 67 | \( 1 + (-0.235 - 0.971i)T \) |
| 71 | \( 1 + (0.818 - 0.574i)T \) |
| 73 | \( 1 + (-0.476 + 0.879i)T \) |
| 79 | \( 1 + (-0.580 - 0.814i)T \) |
| 83 | \( 1 + (-0.301 + 0.953i)T \) |
| 89 | \( 1 + (-0.115 + 0.993i)T \) |
| 97 | \( 1 + (0.142 - 0.989i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.88458154318508708702692287329, −18.34273341145529017589296999927, −17.878004640000357866409954846749, −17.16906721931213050852666884378, −16.57278416700471593789205921206, −15.62525553007793031145519853493, −15.084946518380467341042240047400, −14.63029239722968256518470223130, −13.6989052122798571033165861816, −13.17147993996883024452065205504, −12.70338663559683137256335455435, −11.70386117282835680536418248599, −10.65111723705456807909987759911, −10.11442153925478018299802741328, −9.39242094302560016286443025225, −8.477963216358485352004437231540, −7.682800642959128759235729222599, −7.2545091625909024034507494379, −6.228813206910594425635750395414, −5.66918883590200657814620174159, −5.18972902407279144298034612400, −4.102292466064039547748262836434, −3.228659493802900932431437501174, −2.58869995719958574277134502872, −1.42989034359528022396211987588,
0.2089291442418241917195396141, 1.30421630988220345015737616776, 2.084709882582917680515752309300, 2.788275818181339268808284881848, 3.66809180837056718114540355697, 4.74547824079726164874521863138, 5.11693676494662045667502075990, 5.84682541868397712070633445951, 6.76893876448452649023926664417, 7.808405006709169693208038878158, 8.78521024832118159374519109716, 9.40322898834836298125649505760, 9.7672725060714705851501680918, 10.840113195583575123838057714116, 11.27798403002371676872925710125, 12.17059351372308420561298189115, 12.785702831669897261785507335980, 13.51641108400257758890350776021, 13.91544095064638516895884279826, 14.55587735152982837156979099736, 15.733058383738051940988418584738, 16.19768046526598239005898489533, 17.115861758882503760786034286189, 17.976491288605411867799812197113, 18.31761820203405306113911050907