L(s) = 1 | + (−0.988 + 0.149i)3-s + (−0.365 + 0.930i)5-s + (0.955 − 0.294i)9-s + (0.955 + 0.294i)11-s + (−0.222 − 0.974i)13-s + (0.222 − 0.974i)15-s + (0.5 + 0.866i)19-s + (0.826 + 0.563i)23-s + (−0.733 − 0.680i)25-s + (−0.900 + 0.433i)27-s + (0.900 + 0.433i)29-s + (−0.5 + 0.866i)31-s + (−0.988 − 0.149i)33-s + (−0.0747 − 0.997i)37-s + (0.365 + 0.930i)39-s + ⋯ |
L(s) = 1 | + (−0.988 + 0.149i)3-s + (−0.365 + 0.930i)5-s + (0.955 − 0.294i)9-s + (0.955 + 0.294i)11-s + (−0.222 − 0.974i)13-s + (0.222 − 0.974i)15-s + (0.5 + 0.866i)19-s + (0.826 + 0.563i)23-s + (−0.733 − 0.680i)25-s + (−0.900 + 0.433i)27-s + (0.900 + 0.433i)29-s + (−0.5 + 0.866i)31-s + (−0.988 − 0.149i)33-s + (−0.0747 − 0.997i)37-s + (0.365 + 0.930i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.606 - 0.794i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.606 - 0.794i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.08032239709 - 0.1623307393i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.08032239709 - 0.1623307393i\) |
\(L(1)\) |
\(\approx\) |
\(0.7234862629 + 0.1340412440i\) |
\(L(1)\) |
\(\approx\) |
\(0.7234862629 + 0.1340412440i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
| 17 | \( 1 \) |
good | 3 | \( 1 + (-0.988 + 0.149i)T \) |
| 5 | \( 1 + (-0.365 + 0.930i)T \) |
| 11 | \( 1 + (0.955 + 0.294i)T \) |
| 13 | \( 1 + (-0.222 - 0.974i)T \) |
| 19 | \( 1 + (0.5 + 0.866i)T \) |
| 23 | \( 1 + (0.826 + 0.563i)T \) |
| 29 | \( 1 + (0.900 + 0.433i)T \) |
| 31 | \( 1 + (-0.5 + 0.866i)T \) |
| 37 | \( 1 + (-0.0747 - 0.997i)T \) |
| 41 | \( 1 + (-0.623 - 0.781i)T \) |
| 43 | \( 1 + (-0.623 + 0.781i)T \) |
| 47 | \( 1 + (0.733 - 0.680i)T \) |
| 53 | \( 1 + (0.0747 - 0.997i)T \) |
| 59 | \( 1 + (-0.365 - 0.930i)T \) |
| 61 | \( 1 + (-0.0747 - 0.997i)T \) |
| 67 | \( 1 + (0.5 - 0.866i)T \) |
| 71 | \( 1 + (-0.900 + 0.433i)T \) |
| 73 | \( 1 + (0.733 + 0.680i)T \) |
| 79 | \( 1 + (-0.5 - 0.866i)T \) |
| 83 | \( 1 + (0.222 - 0.974i)T \) |
| 89 | \( 1 + (0.955 - 0.294i)T \) |
| 97 | \( 1 - T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.97896080994357161290580058085, −18.185996599409567863962026239576, −17.27702324061329179236788806030, −16.813460533467826836600731779476, −16.46615663102251740327305032403, −15.58072737353973752052040547868, −14.96572959272947470576104751313, −13.78890509426176413412192977400, −13.35560407106493254106825697162, −12.43063201449369553034653797610, −11.82180382953222815306943076958, −11.51100085742347012307114031788, −10.64992777894303373288956054332, −9.629963488289081057576249857879, −9.10346850803776464326476884538, −8.33082861974157053755143295761, −7.31491990607274101552524816509, −6.73462679447983065900192156818, −5.99138362469544076451600312642, −5.09320518495017305550464031515, −4.49508455244359833093218826141, −3.93713738280920594692179432158, −2.64657261866545880777487614278, −1.412394645629559453113991925132, −0.95076976485729832639100384057,
0.04139430702953612520130087393, 1.04375324286663085634876865058, 1.96660788820568484371458966335, 3.32141171988612173022997288124, 3.64009560585421812309023120798, 4.76224010254993544466931348785, 5.44417824314366481478453492800, 6.25316889189306646847330720805, 6.967064370616167826531456412648, 7.43120897125933621213691515401, 8.41853293690340503182687688326, 9.50010994392325725910822452022, 10.124140195151649813882676327202, 10.76647667103206042825640375331, 11.34711116467450584543529337451, 12.16486472578045088965957425347, 12.501195879347558360177253637979, 13.58467140387508922565667630049, 14.48427224878836894024001963027, 14.95467253054150846688896805182, 15.770830729418259993860619139241, 16.27166025372618002800080955492, 17.29696474947075335577817682877, 17.60582501807002237504639457805, 18.36424600706007008021733781598