L(s) = 1 | + (−0.988 − 0.149i)3-s + (−0.365 − 0.930i)5-s + (0.955 + 0.294i)9-s + (0.955 − 0.294i)11-s + (−0.222 + 0.974i)13-s + (0.222 + 0.974i)15-s + (0.5 − 0.866i)19-s + (0.826 − 0.563i)23-s + (−0.733 + 0.680i)25-s + (−0.900 − 0.433i)27-s + (0.900 − 0.433i)29-s + (−0.5 − 0.866i)31-s + (−0.988 + 0.149i)33-s + (−0.0747 + 0.997i)37-s + (0.365 − 0.930i)39-s + ⋯ |
L(s) = 1 | + (−0.988 − 0.149i)3-s + (−0.365 − 0.930i)5-s + (0.955 + 0.294i)9-s + (0.955 − 0.294i)11-s + (−0.222 + 0.974i)13-s + (0.222 + 0.974i)15-s + (0.5 − 0.866i)19-s + (0.826 − 0.563i)23-s + (−0.733 + 0.680i)25-s + (−0.900 − 0.433i)27-s + (0.900 − 0.433i)29-s + (−0.5 − 0.866i)31-s + (−0.988 + 0.149i)33-s + (−0.0747 + 0.997i)37-s + (0.365 − 0.930i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.606 + 0.794i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.606 + 0.794i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.08032239709 + 0.1623307393i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.08032239709 + 0.1623307393i\) |
\(L(1)\) |
\(\approx\) |
\(0.7234862629 - 0.1340412440i\) |
\(L(1)\) |
\(\approx\) |
\(0.7234862629 - 0.1340412440i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
| 17 | \( 1 \) |
good | 3 | \( 1 + (-0.988 - 0.149i)T \) |
| 5 | \( 1 + (-0.365 - 0.930i)T \) |
| 11 | \( 1 + (0.955 - 0.294i)T \) |
| 13 | \( 1 + (-0.222 + 0.974i)T \) |
| 19 | \( 1 + (0.5 - 0.866i)T \) |
| 23 | \( 1 + (0.826 - 0.563i)T \) |
| 29 | \( 1 + (0.900 - 0.433i)T \) |
| 31 | \( 1 + (-0.5 - 0.866i)T \) |
| 37 | \( 1 + (-0.0747 + 0.997i)T \) |
| 41 | \( 1 + (-0.623 + 0.781i)T \) |
| 43 | \( 1 + (-0.623 - 0.781i)T \) |
| 47 | \( 1 + (0.733 + 0.680i)T \) |
| 53 | \( 1 + (0.0747 + 0.997i)T \) |
| 59 | \( 1 + (-0.365 + 0.930i)T \) |
| 61 | \( 1 + (-0.0747 + 0.997i)T \) |
| 67 | \( 1 + (0.5 + 0.866i)T \) |
| 71 | \( 1 + (-0.900 - 0.433i)T \) |
| 73 | \( 1 + (0.733 - 0.680i)T \) |
| 79 | \( 1 + (-0.5 + 0.866i)T \) |
| 83 | \( 1 + (0.222 + 0.974i)T \) |
| 89 | \( 1 + (0.955 + 0.294i)T \) |
| 97 | \( 1 - T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.36424600706007008021733781598, −17.60582501807002237504639457805, −17.29696474947075335577817682877, −16.27166025372618002800080955492, −15.770830729418259993860619139241, −14.95467253054150846688896805182, −14.48427224878836894024001963027, −13.58467140387508922565667630049, −12.501195879347558360177253637979, −12.16486472578045088965957425347, −11.34711116467450584543529337451, −10.76647667103206042825640375331, −10.124140195151649813882676327202, −9.50010994392325725910822452022, −8.41853293690340503182687688326, −7.43120897125933621213691515401, −6.967064370616167826531456412648, −6.25316889189306646847330720805, −5.44417824314366481478453492800, −4.76224010254993544466931348785, −3.64009560585421812309023120798, −3.32141171988612173022997288124, −1.96660788820568484371458966335, −1.04375324286663085634876865058, −0.04139430702953612520130087393,
0.95076976485729832639100384057, 1.412394645629559453113991925132, 2.64657261866545880777487614278, 3.93713738280920594692179432158, 4.49508455244359833093218826141, 5.09320518495017305550464031515, 5.99138362469544076451600312642, 6.73462679447983065900192156818, 7.31491990607274101552524816509, 8.33082861974157053755143295761, 9.10346850803776464326476884538, 9.629963488289081057576249857879, 10.64992777894303373288956054332, 11.51100085742347012307114031788, 11.82180382953222815306943076958, 12.43063201449369553034653797610, 13.35560407106493254106825697162, 13.78890509426176413412192977400, 14.96572959272947470576104751313, 15.58072737353973752052040547868, 16.46615663102251740327305032403, 16.813460533467826836600731779476, 17.27702324061329179236788806030, 18.185996599409567863962026239576, 18.97896080994357161290580058085