L(s) = 1 | + (0.365 + 0.930i)3-s + (0.988 + 0.149i)5-s + (−0.733 + 0.680i)9-s + (−0.733 − 0.680i)11-s + (−0.222 + 0.974i)13-s + (0.222 + 0.974i)15-s + (0.5 + 0.866i)19-s + (0.0747 + 0.997i)23-s + (0.955 + 0.294i)25-s + (−0.900 − 0.433i)27-s + (0.900 − 0.433i)29-s + (−0.5 + 0.866i)31-s + (0.365 − 0.930i)33-s + (−0.826 − 0.563i)37-s + (−0.988 + 0.149i)39-s + ⋯ |
L(s) = 1 | + (0.365 + 0.930i)3-s + (0.988 + 0.149i)5-s + (−0.733 + 0.680i)9-s + (−0.733 − 0.680i)11-s + (−0.222 + 0.974i)13-s + (0.222 + 0.974i)15-s + (0.5 + 0.866i)19-s + (0.0747 + 0.997i)23-s + (0.955 + 0.294i)25-s + (−0.900 − 0.433i)27-s + (0.900 − 0.433i)29-s + (−0.5 + 0.866i)31-s + (0.365 − 0.930i)33-s + (−0.826 − 0.563i)37-s + (−0.988 + 0.149i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.385 - 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.385 - 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.3016965410 + 0.4528289822i\) |
\(L(\frac12)\) |
\(\approx\) |
\(-0.3016965410 + 0.4528289822i\) |
\(L(1)\) |
\(\approx\) |
\(1.032089737 + 0.5129425302i\) |
\(L(1)\) |
\(\approx\) |
\(1.032089737 + 0.5129425302i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
| 17 | \( 1 \) |
good | 3 | \( 1 + (0.365 + 0.930i)T \) |
| 5 | \( 1 + (0.988 + 0.149i)T \) |
| 11 | \( 1 + (-0.733 - 0.680i)T \) |
| 13 | \( 1 + (-0.222 + 0.974i)T \) |
| 19 | \( 1 + (0.5 + 0.866i)T \) |
| 23 | \( 1 + (0.0747 + 0.997i)T \) |
| 29 | \( 1 + (0.900 - 0.433i)T \) |
| 31 | \( 1 + (-0.5 + 0.866i)T \) |
| 37 | \( 1 + (-0.826 - 0.563i)T \) |
| 41 | \( 1 + (-0.623 + 0.781i)T \) |
| 43 | \( 1 + (-0.623 - 0.781i)T \) |
| 47 | \( 1 + (-0.955 + 0.294i)T \) |
| 53 | \( 1 + (0.826 - 0.563i)T \) |
| 59 | \( 1 + (0.988 - 0.149i)T \) |
| 61 | \( 1 + (-0.826 - 0.563i)T \) |
| 67 | \( 1 + (0.5 - 0.866i)T \) |
| 71 | \( 1 + (-0.900 - 0.433i)T \) |
| 73 | \( 1 + (-0.955 - 0.294i)T \) |
| 79 | \( 1 + (-0.5 - 0.866i)T \) |
| 83 | \( 1 + (0.222 + 0.974i)T \) |
| 89 | \( 1 + (-0.733 + 0.680i)T \) |
| 97 | \( 1 - T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.10765399448146907093242878933, −17.70829861051229834093763537875, −17.09866715822830961555272842266, −16.18569114955564432751078084954, −15.19940478003994110565351288708, −14.71785976298509168415953188954, −13.84308766123423698411450268627, −13.27174894174032752455469257692, −12.78430076272163705156442461847, −12.17633608088381676020377353080, −11.226330407545264749229639838756, −10.21281914050887863147615136448, −9.86852544404996702114876568578, −8.73855606637009702604013085274, −8.38781809232713751829414999628, −7.28686494199406492257478173299, −6.921964445367529054456306917858, −5.93222007216742144662122291869, −5.31773463778907929686318770012, −4.54949685905698420088135100480, −3.082902674097969240378076263983, −2.65524752072702227255166247026, −1.85537286738506847890547808072, −0.97854315346159697046374479270, −0.07396284921813869050092885681,
1.45565707517471638125037119953, 2.2022264891893922329314293298, 3.13121354966356956598984133049, 3.67085930232304934562940758134, 4.85400036412496578106631343672, 5.31521038691633222875876623836, 6.06593739778973724955728563910, 6.95639781850925050599881250125, 7.94714130735871725744283416284, 8.693528026663551622312452601, 9.336617458773163321448436066870, 10.04368992064481324774078889713, 10.47280323219933279480441452502, 11.32475573558093910280780995343, 12.0394317050585402730752555072, 13.18218157742069152286338614812, 13.77115950505555296832585100628, 14.22150692720119077770253456126, 14.912911322611866930379918091088, 15.82577987716709511302093052468, 16.33918421891646628184963336453, 16.93533727749835579776956278937, 17.739108257385235946524879411870, 18.43909243969295603601894236544, 19.218078658360229194956365500222