L(s) = 1 | + (−0.642 + 0.766i)3-s + (0.342 + 0.939i)5-s + (0.5 + 0.866i)7-s + (−0.173 − 0.984i)9-s + (0.866 + 0.5i)11-s + (0.642 + 0.766i)13-s + (−0.939 − 0.342i)15-s + (0.173 − 0.984i)17-s + (−0.984 − 0.173i)21-s + (0.939 + 0.342i)23-s + (−0.766 + 0.642i)25-s + (0.866 + 0.5i)27-s + (−0.984 + 0.173i)29-s + (−0.5 − 0.866i)31-s + (−0.939 + 0.342i)33-s + ⋯ |
L(s) = 1 | + (−0.642 + 0.766i)3-s + (0.342 + 0.939i)5-s + (0.5 + 0.866i)7-s + (−0.173 − 0.984i)9-s + (0.866 + 0.5i)11-s + (0.642 + 0.766i)13-s + (−0.939 − 0.342i)15-s + (0.173 − 0.984i)17-s + (−0.984 − 0.173i)21-s + (0.939 + 0.342i)23-s + (−0.766 + 0.642i)25-s + (0.866 + 0.5i)27-s + (−0.984 + 0.173i)29-s + (−0.5 − 0.866i)31-s + (−0.939 + 0.342i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 304 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.368 + 0.929i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 304 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.368 + 0.929i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6558138442 + 0.9655770726i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6558138442 + 0.9655770726i\) |
\(L(1)\) |
\(\approx\) |
\(0.8737496039 + 0.5277126383i\) |
\(L(1)\) |
\(\approx\) |
\(0.8737496039 + 0.5277126383i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 19 | \( 1 \) |
good | 3 | \( 1 + (-0.642 + 0.766i)T \) |
| 5 | \( 1 + (0.342 + 0.939i)T \) |
| 7 | \( 1 + (0.5 + 0.866i)T \) |
| 11 | \( 1 + (0.866 + 0.5i)T \) |
| 13 | \( 1 + (0.642 + 0.766i)T \) |
| 17 | \( 1 + (0.173 - 0.984i)T \) |
| 23 | \( 1 + (0.939 + 0.342i)T \) |
| 29 | \( 1 + (-0.984 + 0.173i)T \) |
| 31 | \( 1 + (-0.5 - 0.866i)T \) |
| 37 | \( 1 - iT \) |
| 41 | \( 1 + (-0.766 - 0.642i)T \) |
| 43 | \( 1 + (0.342 + 0.939i)T \) |
| 47 | \( 1 + (0.173 + 0.984i)T \) |
| 53 | \( 1 + (-0.342 + 0.939i)T \) |
| 59 | \( 1 + (-0.984 - 0.173i)T \) |
| 61 | \( 1 + (0.342 - 0.939i)T \) |
| 67 | \( 1 + (-0.984 + 0.173i)T \) |
| 71 | \( 1 + (0.939 - 0.342i)T \) |
| 73 | \( 1 + (-0.766 - 0.642i)T \) |
| 79 | \( 1 + (0.766 + 0.642i)T \) |
| 83 | \( 1 + (0.866 - 0.5i)T \) |
| 89 | \( 1 + (-0.766 + 0.642i)T \) |
| 97 | \( 1 + (0.173 - 0.984i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.88467625943684272984981526677, −24.06883928789892282727677959610, −23.50036368619723292162960510244, −22.49667581823243369865184190621, −21.46960627414831850557366116316, −20.44670602917924469458786251111, −19.703403104240414775297340061939, −18.637778350835356768388616039831, −17.54142351440121165042541932080, −16.993843200711398633764035375548, −16.37792285712550058138758269883, −14.85498565082840625809718607917, −13.64284055669425946661094570385, −13.12555553919396659224257044579, −12.139504116122267582119314330246, −11.12803354122726619035383007079, −10.30566259418829836797413144368, −8.77146100447556107736693321765, −8.037757981075686921001976618088, −6.83472194491101600035147252328, −5.83210986424440085472318288021, −4.91341649824255364452978690293, −3.65223468571949303082589233166, −1.662875200487151437822857379087, −0.93526077279232939128927972497,
1.74034897096722977565615809738, 3.148113715141874780646748335, 4.31649242606321964473539107306, 5.48158832167564565079833276177, 6.334415458890799372964058435207, 7.358062219016950436017746615982, 9.17616850455704660914835989969, 9.46788361010258019814226622651, 11.00471059489827231020982614025, 11.35552122236513837613480042305, 12.381444875879124320648188043292, 13.943912703255061543093969043266, 14.77099284207709672194225820610, 15.43160801357556355920973965856, 16.535615983376876833849431486797, 17.48459037946534806569557424805, 18.27575415740183585036658909656, 19.02458778235474540968396884457, 20.55043738451922998937299833378, 21.26132133312481352174954566740, 22.11589945937620343981196558994, 22.65881605461451845970635175771, 23.59304712278434383327340066324, 24.83747631948543142099123035061, 25.66783841425993329585494459665