L(s) = 1 | + (0.195 + 0.980i)3-s + (−0.831 + 0.555i)5-s + (0.923 + 0.382i)7-s + (−0.923 + 0.382i)9-s + (−0.980 − 0.195i)11-s + (0.831 + 0.555i)13-s + (−0.707 − 0.707i)15-s + (−0.707 + 0.707i)17-s + (−0.555 + 0.831i)19-s + (−0.195 + 0.980i)21-s + (−0.382 − 0.923i)23-s + (0.382 − 0.923i)25-s + (−0.555 − 0.831i)27-s + (0.980 − 0.195i)29-s + i·31-s + ⋯ |
L(s) = 1 | + (0.195 + 0.980i)3-s + (−0.831 + 0.555i)5-s + (0.923 + 0.382i)7-s + (−0.923 + 0.382i)9-s + (−0.980 − 0.195i)11-s + (0.831 + 0.555i)13-s + (−0.707 − 0.707i)15-s + (−0.707 + 0.707i)17-s + (−0.555 + 0.831i)19-s + (−0.195 + 0.980i)21-s + (−0.382 − 0.923i)23-s + (0.382 − 0.923i)25-s + (−0.555 − 0.831i)27-s + (0.980 − 0.195i)29-s + i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 128 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.427 + 0.903i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 128 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.427 + 0.903i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4984937027 + 0.7872075807i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4984937027 + 0.7872075807i\) |
\(L(1)\) |
\(\approx\) |
\(0.8214208856 + 0.5058587313i\) |
\(L(1)\) |
\(\approx\) |
\(0.8214208856 + 0.5058587313i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
good | 3 | \( 1 + (0.195 + 0.980i)T \) |
| 5 | \( 1 + (-0.831 + 0.555i)T \) |
| 7 | \( 1 + (0.923 + 0.382i)T \) |
| 11 | \( 1 + (-0.980 - 0.195i)T \) |
| 13 | \( 1 + (0.831 + 0.555i)T \) |
| 17 | \( 1 + (-0.707 + 0.707i)T \) |
| 19 | \( 1 + (-0.555 + 0.831i)T \) |
| 23 | \( 1 + (-0.382 - 0.923i)T \) |
| 29 | \( 1 + (0.980 - 0.195i)T \) |
| 31 | \( 1 + iT \) |
| 37 | \( 1 + (0.555 + 0.831i)T \) |
| 41 | \( 1 + (0.382 + 0.923i)T \) |
| 43 | \( 1 + (0.195 - 0.980i)T \) |
| 47 | \( 1 + (0.707 - 0.707i)T \) |
| 53 | \( 1 + (0.980 + 0.195i)T \) |
| 59 | \( 1 + (0.831 - 0.555i)T \) |
| 61 | \( 1 + (-0.195 - 0.980i)T \) |
| 67 | \( 1 + (-0.195 - 0.980i)T \) |
| 71 | \( 1 + (-0.923 - 0.382i)T \) |
| 73 | \( 1 + (0.923 - 0.382i)T \) |
| 79 | \( 1 + (0.707 + 0.707i)T \) |
| 83 | \( 1 + (0.555 - 0.831i)T \) |
| 89 | \( 1 + (-0.382 + 0.923i)T \) |
| 97 | \( 1 + iT \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−28.43386308614503060738777228806, −27.60677044492538636209349268437, −26.42850149576630865273879936524, −25.350801695572593758067659039470, −24.20814654340805877768808845857, −23.69007971182269953805629771025, −22.873610887581870429968132455850, −21.04416522282136925015368351955, −20.26974692573787194453198443825, −19.42228650141525496329642354977, −18.13004435318834462376271497042, −17.54903533673274629279118413143, −16.02278685125344550478021260312, −15.05339301543639295158274267381, −13.64236694026771512706862348459, −12.935827919274105034466138380298, −11.68205333586736434284083111776, −10.8801137120692120010649474881, −8.87403964868979618116437230042, −7.972949536316028989334830689487, −7.23246511628088344838671570291, −5.54378512325489057586321178369, −4.22727330726436406002226196895, −2.517700731108094044528611480785, −0.872029738404476876207098219537,
2.402460388377880813060667872741, 3.822298921584754456663497580768, 4.79293732477461635116765064395, 6.27562689905740953801470068389, 8.112425950143340439749637309556, 8.58850390345041039682235542750, 10.43085421746936486621560470224, 10.97476328917083633143226182613, 12.11539337181789992561844777473, 13.8583201208245493477781070848, 14.8627007346825789648650751012, 15.58826516350604387244218871383, 16.51888530066229140699571921730, 18.00125594604347162957079264421, 18.928867906670481254053804139, 20.168289458353374321910139699531, 21.13004143694117669411744346761, 21.86090455178163892225531912940, 23.13518625415299239508304170628, 23.87103449199073817301157914682, 25.33458011006518045192337446109, 26.44103212267501311717159400908, 26.97422448053001753588750270326, 28.00426548472413420152433996285, 28.7649249853674064316151643144