Properties

Label 1-297-297.146-r1-0-0
Degree $1$
Conductor $297$
Sign $0.947 - 0.320i$
Analytic cond. $31.9170$
Root an. cond. $31.9170$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.990 − 0.139i)2-s + (0.961 + 0.275i)4-s + (0.374 − 0.927i)5-s + (0.559 + 0.829i)7-s + (−0.913 − 0.406i)8-s + (−0.5 + 0.866i)10-s + (−0.882 − 0.469i)13-s + (−0.438 − 0.898i)14-s + (0.848 + 0.529i)16-s + (0.978 + 0.207i)17-s + (0.913 + 0.406i)19-s + (0.615 − 0.788i)20-s + (0.939 − 0.342i)23-s + (−0.719 − 0.694i)25-s + (0.809 + 0.587i)26-s + ⋯
L(s)  = 1  + (−0.990 − 0.139i)2-s + (0.961 + 0.275i)4-s + (0.374 − 0.927i)5-s + (0.559 + 0.829i)7-s + (−0.913 − 0.406i)8-s + (−0.5 + 0.866i)10-s + (−0.882 − 0.469i)13-s + (−0.438 − 0.898i)14-s + (0.848 + 0.529i)16-s + (0.978 + 0.207i)17-s + (0.913 + 0.406i)19-s + (0.615 − 0.788i)20-s + (0.939 − 0.342i)23-s + (−0.719 − 0.694i)25-s + (0.809 + 0.587i)26-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 297 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.947 - 0.320i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 297 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.947 - 0.320i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(297\)    =    \(3^{3} \cdot 11\)
Sign: $0.947 - 0.320i$
Analytic conductor: \(31.9170\)
Root analytic conductor: \(31.9170\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{297} (146, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 297,\ (1:\ ),\ 0.947 - 0.320i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.427747102 - 0.2350242334i\)
\(L(\frac12)\) \(\approx\) \(1.427747102 - 0.2350242334i\)
\(L(1)\) \(\approx\) \(0.8663790816 - 0.1003951290i\)
\(L(1)\) \(\approx\) \(0.8663790816 - 0.1003951290i\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
11 \( 1 \)
good2 \( 1 + (-0.990 - 0.139i)T \)
5 \( 1 + (0.374 - 0.927i)T \)
7 \( 1 + (0.559 + 0.829i)T \)
13 \( 1 + (-0.882 - 0.469i)T \)
17 \( 1 + (0.978 + 0.207i)T \)
19 \( 1 + (0.913 + 0.406i)T \)
23 \( 1 + (0.939 - 0.342i)T \)
29 \( 1 + (-0.438 + 0.898i)T \)
31 \( 1 + (0.0348 + 0.999i)T \)
37 \( 1 + (0.913 - 0.406i)T \)
41 \( 1 + (-0.438 - 0.898i)T \)
43 \( 1 + (0.766 - 0.642i)T \)
47 \( 1 + (-0.961 + 0.275i)T \)
53 \( 1 + (-0.309 + 0.951i)T \)
59 \( 1 + (0.241 + 0.970i)T \)
61 \( 1 + (0.0348 - 0.999i)T \)
67 \( 1 + (0.173 - 0.984i)T \)
71 \( 1 + (0.978 + 0.207i)T \)
73 \( 1 + (-0.104 + 0.994i)T \)
79 \( 1 + (0.990 + 0.139i)T \)
83 \( 1 + (0.882 - 0.469i)T \)
89 \( 1 + (0.5 + 0.866i)T \)
97 \( 1 + (-0.374 - 0.927i)T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−25.39830006220394719527772102445, −24.51030196761804191646128761713, −23.61800594729866253984201896828, −22.587092561055180662659196522449, −21.39221835745471038620856964410, −20.65317709645867338684309715202, −19.56988333631610453009066689011, −18.8185125233558334412273993083, −17.90688280169292671568200058693, −17.16810460924600136411025485189, −16.40774019590358974411246938157, −15.00943129582731967754482105753, −14.4962961854211564074042998272, −13.37767911188879116956256305633, −11.661110349397004408805762390624, −11.16693592392809959890010793671, −9.94753227866798539981655740417, −9.54033752584710696760483199088, −7.84688422557679258374144003495, −7.34889943024451931106911185524, −6.34513142058193420137040964232, −5.04977700466073844733503392340, −3.32101107052146765946162558127, −2.17168733664419236670614214004, −0.86424259226114871191539004045, 0.86684974901412937950062052120, 1.9202271940817942592309001150, 3.15039093072990561823059669617, 5.03335301415157015603311963060, 5.78529046573240277703261547202, 7.327491784740044436448041671693, 8.22982843381031781545245562082, 9.09792747611711601313339545123, 9.861955863447414737971888762846, 10.9998516121390051360606120537, 12.26573687018402041468264019896, 12.52381884934266066896253037036, 14.25058223113465044733077136302, 15.23613262106528316989111749126, 16.26770950260955959998653758149, 17.03019185417777040028055261997, 17.8616651118933068016466810282, 18.67351205764415929341818570936, 19.70368034857437604925166572411, 20.58998800901287598426988052983, 21.24914349534620766261506036672, 22.125252530276809545559864475145, 23.6827765056190080014372952820, 24.74145313343757802391682510872, 24.95004482014078224833016754873

Graph of the $Z$-function along the critical line