L(s) = 1 | + (0.882 + 0.469i)2-s + (0.559 + 0.829i)4-s + (−0.848 − 0.529i)5-s + (0.961 + 0.275i)7-s + (0.104 + 0.994i)8-s + (−0.5 − 0.866i)10-s + (0.990 + 0.139i)13-s + (0.719 + 0.694i)14-s + (−0.374 + 0.927i)16-s + (−0.669 + 0.743i)17-s + (−0.104 − 0.994i)19-s + (−0.0348 − 0.999i)20-s + (0.939 + 0.342i)23-s + (0.438 + 0.898i)25-s + (0.809 + 0.587i)26-s + ⋯ |
L(s) = 1 | + (0.882 + 0.469i)2-s + (0.559 + 0.829i)4-s + (−0.848 − 0.529i)5-s + (0.961 + 0.275i)7-s + (0.104 + 0.994i)8-s + (−0.5 − 0.866i)10-s + (0.990 + 0.139i)13-s + (0.719 + 0.694i)14-s + (−0.374 + 0.927i)16-s + (−0.669 + 0.743i)17-s + (−0.104 − 0.994i)19-s + (−0.0348 − 0.999i)20-s + (0.939 + 0.342i)23-s + (0.438 + 0.898i)25-s + (0.809 + 0.587i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 297 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.0354 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 297 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.0354 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.321214456 + 2.240443124i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.321214456 + 2.240443124i\) |
\(L(1)\) |
\(\approx\) |
\(1.651783080 + 0.7106278350i\) |
\(L(1)\) |
\(\approx\) |
\(1.651783080 + 0.7106278350i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (0.882 + 0.469i)T \) |
| 5 | \( 1 + (-0.848 - 0.529i)T \) |
| 7 | \( 1 + (0.961 + 0.275i)T \) |
| 13 | \( 1 + (0.990 + 0.139i)T \) |
| 17 | \( 1 + (-0.669 + 0.743i)T \) |
| 19 | \( 1 + (-0.104 - 0.994i)T \) |
| 23 | \( 1 + (0.939 + 0.342i)T \) |
| 29 | \( 1 + (0.719 - 0.694i)T \) |
| 31 | \( 1 + (-0.615 + 0.788i)T \) |
| 37 | \( 1 + (-0.104 + 0.994i)T \) |
| 41 | \( 1 + (0.719 + 0.694i)T \) |
| 43 | \( 1 + (0.766 + 0.642i)T \) |
| 47 | \( 1 + (-0.559 + 0.829i)T \) |
| 53 | \( 1 + (-0.309 + 0.951i)T \) |
| 59 | \( 1 + (0.997 - 0.0697i)T \) |
| 61 | \( 1 + (-0.615 - 0.788i)T \) |
| 67 | \( 1 + (0.173 + 0.984i)T \) |
| 71 | \( 1 + (-0.669 + 0.743i)T \) |
| 73 | \( 1 + (0.913 - 0.406i)T \) |
| 79 | \( 1 + (-0.882 - 0.469i)T \) |
| 83 | \( 1 + (-0.990 + 0.139i)T \) |
| 89 | \( 1 + (0.5 - 0.866i)T \) |
| 97 | \( 1 + (0.848 - 0.529i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.63845377399594528433409266750, −23.8653892584359963416224540365, −23.02487299130295827807742159316, −22.51972198327443531766208571772, −21.22757023871555368548899671150, −20.61663122494458449088773684818, −19.756375162351999586536720646391, −18.723266356932007766447589210876, −18.00662509402862611985981968885, −16.4133354636373729617343011622, −15.56390616824591443986868303130, −14.65684944099820516665695835569, −14.0117186446823003530748646019, −12.87758862624796771727713030960, −11.811017383706865412331393301782, −11.052446968052851845695272394407, −10.50013744981913913224755617036, −8.84822170317272521309643704571, −7.61735093918523435898733047929, −6.69061063041199659240434948003, −5.40706030916861501799399434224, −4.30084121759463547613337337224, −3.50834686055154082723417015508, −2.19840349942043607669147689991, −0.78357820325053214594333273739,
1.382958462548187035485702259315, 2.96025902326894038682345607691, 4.25157430696742342532832822612, 4.84387979498058175671581388960, 6.07393092572759716195493599588, 7.24065035634433202379219885671, 8.27539281033416712732382854472, 8.85643882193864486849992850591, 11.07006195630945645420684055660, 11.38968054925353614858444504028, 12.58432308120824573403257184221, 13.33999239451549925568742225451, 14.47086956080869125717671648927, 15.39309497894527026722566081509, 15.89547814209775471643059954862, 17.0849833717774383273441052035, 17.851017720352928257384648612217, 19.26114886599514299058490707443, 20.23283367695331333925442480596, 21.07365598607713114422902895086, 21.750686440507877807988322364282, 22.9907593582590217030858200469, 23.67527215317268201844040425303, 24.28391906170287718103677571746, 25.11624219846337283586731613064