L(s) = 1 | + (−0.766 + 0.642i)3-s + (−0.342 + 0.939i)7-s + (0.173 − 0.984i)9-s + (0.866 + 0.5i)11-s + (0.984 − 0.173i)13-s + (0.173 − 0.984i)17-s + (−0.766 + 0.642i)19-s + (−0.342 − 0.939i)21-s + (0.5 + 0.866i)23-s + (0.5 + 0.866i)27-s + (0.5 − 0.866i)29-s − i·31-s + (−0.984 + 0.173i)33-s + (−0.642 + 0.766i)39-s + (0.173 + 0.984i)41-s + ⋯ |
L(s) = 1 | + (−0.766 + 0.642i)3-s + (−0.342 + 0.939i)7-s + (0.173 − 0.984i)9-s + (0.866 + 0.5i)11-s + (0.984 − 0.173i)13-s + (0.173 − 0.984i)17-s + (−0.766 + 0.642i)19-s + (−0.342 − 0.939i)21-s + (0.5 + 0.866i)23-s + (0.5 + 0.866i)27-s + (0.5 − 0.866i)29-s − i·31-s + (−0.984 + 0.173i)33-s + (−0.642 + 0.766i)39-s + (0.173 + 0.984i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2960 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.598 + 0.801i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2960 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.598 + 0.801i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7217255981 + 1.439165354i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7217255981 + 1.439165354i\) |
\(L(1)\) |
\(\approx\) |
\(0.8375608066 + 0.3397223183i\) |
\(L(1)\) |
\(\approx\) |
\(0.8375608066 + 0.3397223183i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 37 | \( 1 \) |
good | 3 | \( 1 + (-0.766 + 0.642i)T \) |
| 7 | \( 1 + (-0.342 + 0.939i)T \) |
| 11 | \( 1 + (0.866 + 0.5i)T \) |
| 13 | \( 1 + (0.984 - 0.173i)T \) |
| 17 | \( 1 + (0.173 - 0.984i)T \) |
| 19 | \( 1 + (-0.766 + 0.642i)T \) |
| 23 | \( 1 + (0.5 + 0.866i)T \) |
| 29 | \( 1 + (0.5 - 0.866i)T \) |
| 31 | \( 1 - iT \) |
| 41 | \( 1 + (0.173 + 0.984i)T \) |
| 43 | \( 1 - iT \) |
| 47 | \( 1 + (0.866 - 0.5i)T \) |
| 53 | \( 1 + (-0.939 + 0.342i)T \) |
| 59 | \( 1 + (-0.939 + 0.342i)T \) |
| 61 | \( 1 + (0.173 + 0.984i)T \) |
| 67 | \( 1 + (-0.939 - 0.342i)T \) |
| 71 | \( 1 + (0.766 - 0.642i)T \) |
| 73 | \( 1 - iT \) |
| 79 | \( 1 + (0.342 - 0.939i)T \) |
| 83 | \( 1 + (0.173 - 0.984i)T \) |
| 89 | \( 1 + (0.342 + 0.939i)T \) |
| 97 | \( 1 + (-0.5 - 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.851844303999679317250071714012, −17.83636165344321362214828922171, −17.21074166759266262208501806415, −16.71390533544303442287901421038, −16.1741477006350789809655505345, −15.22161757820592240863479116582, −14.18709524973572168927864150760, −13.74964776679626304155719010577, −12.81700803620847849005694820425, −12.571893704967659138211391672869, −11.39082081009796400319990634542, −10.91441631460210552866160591618, −10.45374781903402280564456384690, −9.32424058949451585678437719034, −8.50622267198675109531010656055, −7.79336260722827770938933797903, −6.75402027588565792683314406530, −6.46798057146211776625408790526, −5.78302033922869913798958109223, −4.59782822865369546085971963088, −4.02304314372544590792630298374, −3.08184380440813728236203827880, −1.846059452010157051073921431572, −1.062154412771328233821483500064, −0.398915217749371465939579947677,
0.81737113627221549142726589794, 1.74094556025692246120339586066, 2.96454342948533062836977696403, 3.68637342266732296368667402830, 4.52952924959540590046417842368, 5.30866652482304707885236212380, 6.0923938430800312065216746034, 6.52652043999336421914256899740, 7.529960282124226518891122284859, 8.72938445430252119895070341797, 9.14459186150585592284639236166, 9.90165280685921700411150435469, 10.61672587822491576056306042118, 11.496125324638931877887587385113, 11.97735136707985967660297236587, 12.56497712040544604153248377980, 13.50974253548045407549611547512, 14.399150210471257782942465444534, 15.23625088909863689124845713255, 15.62142576165050946729356745798, 16.35154321818522655433591778558, 17.01935563525032188474654614614, 17.754211163178343642958494794145, 18.35920223702564726704333524857, 19.052115330401944933874096665841