| L(s) = 1 | + (−0.913 + 0.406i)5-s + (−0.669 + 0.743i)7-s + (0.913 + 0.406i)11-s + (−0.669 − 0.743i)13-s + (−0.809 + 0.587i)17-s + (0.309 + 0.951i)19-s + (−0.669 − 0.743i)23-s + (0.669 − 0.743i)25-s + (0.104 − 0.994i)29-s + (0.104 + 0.994i)31-s + (0.309 − 0.951i)35-s + (0.809 + 0.587i)37-s + (−0.978 + 0.207i)43-s + (0.978 − 0.207i)47-s + (−0.104 − 0.994i)49-s + ⋯ |
| L(s) = 1 | + (−0.913 + 0.406i)5-s + (−0.669 + 0.743i)7-s + (0.913 + 0.406i)11-s + (−0.669 − 0.743i)13-s + (−0.809 + 0.587i)17-s + (0.309 + 0.951i)19-s + (−0.669 − 0.743i)23-s + (0.669 − 0.743i)25-s + (0.104 − 0.994i)29-s + (0.104 + 0.994i)31-s + (0.309 − 0.951i)35-s + (0.809 + 0.587i)37-s + (−0.978 + 0.207i)43-s + (0.978 − 0.207i)47-s + (−0.104 − 0.994i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2952 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.867 + 0.497i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2952 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.867 + 0.497i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2643295434 + 0.9927411564i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.2643295434 + 0.9927411564i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7789743157 + 0.2211250594i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7789743157 + 0.2211250594i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 41 | \( 1 \) |
| good | 5 | \( 1 + (-0.913 + 0.406i)T \) |
| 7 | \( 1 + (-0.669 + 0.743i)T \) |
| 11 | \( 1 + (0.913 + 0.406i)T \) |
| 13 | \( 1 + (-0.669 - 0.743i)T \) |
| 17 | \( 1 + (-0.809 + 0.587i)T \) |
| 19 | \( 1 + (0.309 + 0.951i)T \) |
| 23 | \( 1 + (-0.669 - 0.743i)T \) |
| 29 | \( 1 + (0.104 - 0.994i)T \) |
| 31 | \( 1 + (0.104 + 0.994i)T \) |
| 37 | \( 1 + (0.809 + 0.587i)T \) |
| 43 | \( 1 + (-0.978 + 0.207i)T \) |
| 47 | \( 1 + (0.978 - 0.207i)T \) |
| 53 | \( 1 + (0.809 + 0.587i)T \) |
| 59 | \( 1 + (0.669 + 0.743i)T \) |
| 61 | \( 1 + (-0.669 + 0.743i)T \) |
| 67 | \( 1 + (0.913 - 0.406i)T \) |
| 71 | \( 1 + (0.809 - 0.587i)T \) |
| 73 | \( 1 + T \) |
| 79 | \( 1 + (0.5 + 0.866i)T \) |
| 83 | \( 1 + (-0.5 - 0.866i)T \) |
| 89 | \( 1 + (0.309 + 0.951i)T \) |
| 97 | \( 1 + (-0.104 + 0.994i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.8388172179296432728124050048, −17.88922453753754397597308636678, −16.99260288915516219968537035800, −16.59759930914097117857797205496, −15.885164039290682028840899692288, −15.29579721292881856350546031742, −14.31064968465663879249891443907, −13.7302845146688721849946658734, −12.984711976781509791120219081765, −12.21969651334957662357502052487, −11.389532056333724120107091105164, −11.16334721856359725899157142263, −9.86319630906611812767738259378, −9.318364106267671651473815574800, −8.67905916501890479001648711763, −7.657959655900354402923809777490, −7.01619962176522813660050784371, −6.53344013849947642667370180523, −5.33280939617373192968788562405, −4.443801640578836847522181293330, −3.92634707560419467784886357734, −3.16633357835989097666401341106, −2.06688506009114964730195782086, −0.84964528736590218410699580811, −0.25890561557211275257359212883,
0.80820267282068550589196498820, 2.11869771197935873600153009484, 2.831066608046028583538212982030, 3.74391019924849094478421091791, 4.31579181620574688218230978335, 5.359651946460352255782442012611, 6.33821775900427065800154082034, 6.73968237351714340023822633512, 7.780243953577280581309650996536, 8.34404895587802766327006946301, 9.177572153687055000015758609291, 10.02972446659307264211812058349, 10.56801804334528988827856172888, 11.66241090985536184150457963544, 12.14793940913884198618608535359, 12.58292590961135485391011056514, 13.59106492214570250386529461053, 14.54353479304013191502253106714, 15.09850810918055336951241300406, 15.541051533402259452998870173356, 16.4028173417572404725374199261, 17.02490596087392726414985307863, 17.997166656247004547997286246828, 18.523031477499325321004221301811, 19.316852444568759080523625911375