L(s) = 1 | + (0.222 + 0.974i)2-s + (0.900 + 0.433i)3-s + (−0.900 + 0.433i)4-s + (−0.222 − 0.974i)5-s + (−0.222 + 0.974i)6-s + (−0.900 − 0.433i)7-s + (−0.623 − 0.781i)8-s + (0.623 + 0.781i)9-s + (0.900 − 0.433i)10-s + (−0.623 + 0.781i)11-s − 12-s + (0.623 − 0.781i)13-s + (0.222 − 0.974i)14-s + (0.222 − 0.974i)15-s + (0.623 − 0.781i)16-s − 17-s + ⋯ |
L(s) = 1 | + (0.222 + 0.974i)2-s + (0.900 + 0.433i)3-s + (−0.900 + 0.433i)4-s + (−0.222 − 0.974i)5-s + (−0.222 + 0.974i)6-s + (−0.900 − 0.433i)7-s + (−0.623 − 0.781i)8-s + (0.623 + 0.781i)9-s + (0.900 − 0.433i)10-s + (−0.623 + 0.781i)11-s − 12-s + (0.623 − 0.781i)13-s + (0.222 − 0.974i)14-s + (0.222 − 0.974i)15-s + (0.623 − 0.781i)16-s − 17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 29 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.357 + 0.934i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 29 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.357 + 0.934i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7180344568 + 0.4941222572i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7180344568 + 0.4941222572i\) |
\(L(1)\) |
\(\approx\) |
\(0.9788579405 + 0.5013789824i\) |
\(L(1)\) |
\(\approx\) |
\(0.9788579405 + 0.5013789824i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 29 | \( 1 \) |
good | 2 | \( 1 + (0.222 + 0.974i)T \) |
| 3 | \( 1 + (0.900 + 0.433i)T \) |
| 5 | \( 1 + (-0.222 - 0.974i)T \) |
| 7 | \( 1 + (-0.900 - 0.433i)T \) |
| 11 | \( 1 + (-0.623 + 0.781i)T \) |
| 13 | \( 1 + (0.623 - 0.781i)T \) |
| 17 | \( 1 - T \) |
| 19 | \( 1 + (0.900 - 0.433i)T \) |
| 23 | \( 1 + (-0.222 + 0.974i)T \) |
| 31 | \( 1 + (0.222 + 0.974i)T \) |
| 37 | \( 1 + (-0.623 - 0.781i)T \) |
| 41 | \( 1 - T \) |
| 43 | \( 1 + (0.222 - 0.974i)T \) |
| 47 | \( 1 + (-0.623 + 0.781i)T \) |
| 53 | \( 1 + (-0.222 - 0.974i)T \) |
| 59 | \( 1 + T \) |
| 61 | \( 1 + (0.900 + 0.433i)T \) |
| 67 | \( 1 + (0.623 + 0.781i)T \) |
| 71 | \( 1 + (0.623 - 0.781i)T \) |
| 73 | \( 1 + (0.222 - 0.974i)T \) |
| 79 | \( 1 + (-0.623 - 0.781i)T \) |
| 83 | \( 1 + (-0.900 + 0.433i)T \) |
| 89 | \( 1 + (0.222 + 0.974i)T \) |
| 97 | \( 1 + (0.900 - 0.433i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−37.472816684805367884766126485304, −36.05290985367418708932697838197, −34.9779251993863654677059534847, −32.94398106367929238881590275443, −31.53535246510824253850563607235, −30.95906036914419741131251761688, −29.67268131011723952403343421659, −28.713235718478163069382242737680, −26.73503824687056749258469337023, −26.086393307424357170969489348231, −24.19503769002546292200700747881, −22.75413382232820657565328128440, −21.56927833632389005558957901429, −20.14682615061081844471041391670, −18.8345936296567753203993983291, −18.4745283405985560358470105866, −15.6099313237819781463759453578, −14.12623375479326874022967911496, −13.14389844034692319456445844442, −11.55120507413995855662053352753, −9.94970203852027398577326840882, −8.50501843972967509078698302643, −6.416861012020751427602064281908, −3.62705518518547117294005850178, −2.49079792248403447627084129787,
3.60892371717206461070268744899, 5.08758665309842941298914414390, 7.31429291405065213960582874952, 8.65478881611810207486834029951, 9.8614053478242136375450757624, 12.84823028408343441070384092705, 13.62237875743375831166492554543, 15.54978997072314262633148132905, 16.00049400663150968222210935604, 17.70425038990496369366756061426, 19.64337154397940999991294791273, 20.752431183315054086889118907363, 22.38363900482181567389609371500, 23.72872326294396064186236822911, 25.07386857160635349587185482185, 25.9351440459263721803012624346, 27.107608237767454243147265172099, 28.454218548616423298675408796222, 30.64458272977439180965131044197, 31.68982615438367985291580467558, 32.614478472899796839997785977164, 33.36464701017846370341614943169, 35.39090313652722092796549573143, 36.00013704825838537402679077079, 37.21774510218629940317127496853