L(s) = 1 | + (0.781 − 0.623i)2-s + (−0.974 + 0.222i)3-s + (0.222 − 0.974i)4-s + (−0.623 − 0.781i)5-s + (−0.623 + 0.781i)6-s + (−0.222 − 0.974i)7-s + (−0.433 − 0.900i)8-s + (0.900 − 0.433i)9-s + (−0.974 − 0.222i)10-s + (−0.433 + 0.900i)11-s + i·12-s + (0.900 + 0.433i)13-s + (−0.781 − 0.623i)14-s + (0.781 + 0.623i)15-s + (−0.900 − 0.433i)16-s − i·17-s + ⋯ |
L(s) = 1 | + (0.781 − 0.623i)2-s + (−0.974 + 0.222i)3-s + (0.222 − 0.974i)4-s + (−0.623 − 0.781i)5-s + (−0.623 + 0.781i)6-s + (−0.222 − 0.974i)7-s + (−0.433 − 0.900i)8-s + (0.900 − 0.433i)9-s + (−0.974 − 0.222i)10-s + (−0.433 + 0.900i)11-s + i·12-s + (0.900 + 0.433i)13-s + (−0.781 − 0.623i)14-s + (0.781 + 0.623i)15-s + (−0.900 − 0.433i)16-s − i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 29 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.647 - 0.761i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 29 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.647 - 0.761i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5266494350 - 1.139198729i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5266494350 - 1.139198729i\) |
\(L(1)\) |
\(\approx\) |
\(0.8558977307 - 0.6589800951i\) |
\(L(1)\) |
\(\approx\) |
\(0.8558977307 - 0.6589800951i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 29 | \( 1 \) |
good | 2 | \( 1 + (0.781 - 0.623i)T \) |
| 3 | \( 1 + (-0.974 + 0.222i)T \) |
| 5 | \( 1 + (-0.623 - 0.781i)T \) |
| 7 | \( 1 + (-0.222 - 0.974i)T \) |
| 11 | \( 1 + (-0.433 + 0.900i)T \) |
| 13 | \( 1 + (0.900 + 0.433i)T \) |
| 17 | \( 1 - iT \) |
| 19 | \( 1 + (0.974 + 0.222i)T \) |
| 23 | \( 1 + (0.623 - 0.781i)T \) |
| 31 | \( 1 + (0.781 - 0.623i)T \) |
| 37 | \( 1 + (-0.433 - 0.900i)T \) |
| 41 | \( 1 + iT \) |
| 43 | \( 1 + (-0.781 - 0.623i)T \) |
| 47 | \( 1 + (0.433 - 0.900i)T \) |
| 53 | \( 1 + (0.623 + 0.781i)T \) |
| 59 | \( 1 + T \) |
| 61 | \( 1 + (-0.974 + 0.222i)T \) |
| 67 | \( 1 + (0.900 - 0.433i)T \) |
| 71 | \( 1 + (0.900 + 0.433i)T \) |
| 73 | \( 1 + (0.781 + 0.623i)T \) |
| 79 | \( 1 + (0.433 + 0.900i)T \) |
| 83 | \( 1 + (-0.222 + 0.974i)T \) |
| 89 | \( 1 + (0.781 - 0.623i)T \) |
| 97 | \( 1 + (-0.974 - 0.222i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−37.75543004271375285050490415837, −35.30071555037263780982302470264, −34.900777062249056678366853677187, −33.93480192219335289084224490106, −32.62276320734219820817784323730, −31.16595342434195412651204459483, −30.22191491820980780987429600948, −28.84633617909296494543043882995, −27.30089912457735035819772456564, −25.88304240476270323785155702456, −24.401221291309547870210537051515, −23.338596580508229293963863142366, −22.34911704887705895653853065142, −21.39779386405463253563192193826, −18.96783727437158316341507204701, −17.79102298864331363930172849290, −16.06943386015238726808577491729, −15.32929421984563181146381637221, −13.43364710149578146076085127280, −12.02926139921453587514462118083, −10.9633172903835575438091565976, −8.14011235199247140640569741096, −6.53395156253449730742010663178, −5.43731734385044667128186961082, −3.31077422201071744138994531220,
0.857889842621212458023636053494, 3.99371708555228898890407169288, 5.096640965904074460604176472198, 6.997427609075130594386528527654, 9.75782432156971915785778251596, 11.14091081738288091238599689853, 12.27845707813199937712039662615, 13.50487667362348920446696271045, 15.55333091730257643749158749732, 16.58297853303267306644327736502, 18.4256850190098632957672223572, 20.19517012155017227546697700064, 20.97008970442137623631343409255, 22.86071408752858060385315494963, 23.243285180097225294197428872438, 24.52045595003607325659052272532, 26.87949788749073532592728646119, 28.20852030625269360639138135458, 28.89762786909636024246637396006, 30.27073544681008763253625810393, 31.54291645923619831869373464904, 32.94109717368958071867304469414, 33.56174510700917983452622234682, 35.40518458118424502533895766776, 36.46670722350424149668306399740