L(s) = 1 | + (0.669 − 0.743i)2-s + (0.5 − 0.866i)3-s + (−0.104 − 0.994i)4-s + (0.913 + 0.406i)5-s + (−0.309 − 0.951i)6-s + (−0.809 − 0.587i)8-s + (−0.5 − 0.866i)9-s + (0.913 − 0.406i)10-s + (−0.913 + 0.406i)11-s + (−0.913 − 0.406i)12-s + (−0.309 − 0.951i)13-s + (0.809 − 0.587i)15-s + (−0.978 + 0.207i)16-s + (−0.913 + 0.406i)17-s + (−0.978 − 0.207i)18-s + (0.978 − 0.207i)19-s + ⋯ |
L(s) = 1 | + (0.669 − 0.743i)2-s + (0.5 − 0.866i)3-s + (−0.104 − 0.994i)4-s + (0.913 + 0.406i)5-s + (−0.309 − 0.951i)6-s + (−0.809 − 0.587i)8-s + (−0.5 − 0.866i)9-s + (0.913 − 0.406i)10-s + (−0.913 + 0.406i)11-s + (−0.913 − 0.406i)12-s + (−0.309 − 0.951i)13-s + (0.809 − 0.587i)15-s + (−0.978 + 0.207i)16-s + (−0.913 + 0.406i)17-s + (−0.978 − 0.207i)18-s + (0.978 − 0.207i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 287 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.649 - 0.759i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 287 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.649 - 0.759i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8839342497 - 1.919159538i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8839342497 - 1.919159538i\) |
\(L(1)\) |
\(\approx\) |
\(1.262233311 - 1.195524662i\) |
\(L(1)\) |
\(\approx\) |
\(1.262233311 - 1.195524662i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 41 | \( 1 \) |
good | 2 | \( 1 + (0.669 - 0.743i)T \) |
| 3 | \( 1 + (0.5 - 0.866i)T \) |
| 5 | \( 1 + (0.913 + 0.406i)T \) |
| 11 | \( 1 + (-0.913 + 0.406i)T \) |
| 13 | \( 1 + (-0.309 - 0.951i)T \) |
| 17 | \( 1 + (-0.913 + 0.406i)T \) |
| 19 | \( 1 + (0.978 - 0.207i)T \) |
| 23 | \( 1 + (0.669 - 0.743i)T \) |
| 29 | \( 1 + (0.809 - 0.587i)T \) |
| 31 | \( 1 + (0.913 - 0.406i)T \) |
| 37 | \( 1 + (0.913 + 0.406i)T \) |
| 43 | \( 1 + (0.309 + 0.951i)T \) |
| 47 | \( 1 + (-0.669 + 0.743i)T \) |
| 53 | \( 1 + (0.104 + 0.994i)T \) |
| 59 | \( 1 + (-0.978 - 0.207i)T \) |
| 61 | \( 1 + (-0.978 + 0.207i)T \) |
| 67 | \( 1 + (0.104 + 0.994i)T \) |
| 71 | \( 1 + (0.809 + 0.587i)T \) |
| 73 | \( 1 + (-0.5 + 0.866i)T \) |
| 79 | \( 1 + (0.5 + 0.866i)T \) |
| 83 | \( 1 + T \) |
| 89 | \( 1 + (0.978 - 0.207i)T \) |
| 97 | \( 1 + (0.809 - 0.587i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.82063208815583580553292116791, −24.933060398819088902323072877472, −24.268216187130877525005771276641, −23.13118891065472388735888600358, −22.03782189576876372545230072872, −21.43422601786870021937103245389, −20.86622404571755933641880939557, −19.83649465950474884843924735654, −18.30983717514402876324615105182, −17.33171192501618672975408980500, −16.358693188381459928854350416412, −15.842133312538434316115319997673, −14.75861345554653134472532046199, −13.69823478621185587173236864206, −13.4882023659635902460567336467, −12.019675938377822444483676028453, −10.781527798887485614630199530839, −9.49201500441869434974214576798, −8.85143918795284469785001029469, −7.734147123716402604067053373776, −6.44289431959701919196637752713, −5.19730624660034528264852162051, −4.74230090334563815121347836799, −3.302439165577102391463857047569, −2.28939254213424148055098466034,
1.14353016963895250382010365361, 2.57283952002745713123881069461, 2.83784397169118367733357233295, 4.67400917245354866989806455809, 5.83834873942922270561513872039, 6.69452769481151933022956800659, 7.96327412666126029118262193524, 9.33363701518258684613800042967, 10.19647324257725517762648397262, 11.19069310744547139699123145575, 12.470009423533524536398231362612, 13.14867725837623675121543113315, 13.76205906076987226045622014563, 14.77802647936692288942855162433, 15.50403865998043443585205630702, 17.486714433285047095857881576341, 18.08607267586970793099664307957, 18.87854050152466575676686381575, 19.95531043528499793024173265038, 20.60270089870553527706986796634, 21.502177661128166627485676883611, 22.57666022251195553574639533471, 23.19108091379998872918411339323, 24.47376333289036279515813134186, 24.83496153027059301136227027659