L(s) = 1 | + (0.951 − 0.309i)2-s + (−0.707 − 0.707i)3-s + (0.809 − 0.587i)4-s + (0.587 + 0.809i)5-s + (−0.891 − 0.453i)6-s + (0.587 − 0.809i)8-s + i·9-s + (0.809 + 0.587i)10-s + (0.156 + 0.987i)11-s + (−0.987 − 0.156i)12-s + (0.453 − 0.891i)13-s + (0.156 − 0.987i)15-s + (0.309 − 0.951i)16-s + (0.987 − 0.156i)17-s + (0.309 + 0.951i)18-s + (0.453 + 0.891i)19-s + ⋯ |
L(s) = 1 | + (0.951 − 0.309i)2-s + (−0.707 − 0.707i)3-s + (0.809 − 0.587i)4-s + (0.587 + 0.809i)5-s + (−0.891 − 0.453i)6-s + (0.587 − 0.809i)8-s + i·9-s + (0.809 + 0.587i)10-s + (0.156 + 0.987i)11-s + (−0.987 − 0.156i)12-s + (0.453 − 0.891i)13-s + (0.156 − 0.987i)15-s + (0.309 − 0.951i)16-s + (0.987 − 0.156i)17-s + (0.309 + 0.951i)18-s + (0.453 + 0.891i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 287 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.735 - 0.677i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 287 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.735 - 0.677i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.896061039 - 0.7408873882i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.896061039 - 0.7408873882i\) |
\(L(1)\) |
\(\approx\) |
\(1.604514687 - 0.4611703222i\) |
\(L(1)\) |
\(\approx\) |
\(1.604514687 - 0.4611703222i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 41 | \( 1 \) |
good | 2 | \( 1 + (0.951 - 0.309i)T \) |
| 3 | \( 1 + (-0.707 - 0.707i)T \) |
| 5 | \( 1 + (0.587 + 0.809i)T \) |
| 11 | \( 1 + (0.156 + 0.987i)T \) |
| 13 | \( 1 + (0.453 - 0.891i)T \) |
| 17 | \( 1 + (0.987 - 0.156i)T \) |
| 19 | \( 1 + (0.453 + 0.891i)T \) |
| 23 | \( 1 + (-0.309 - 0.951i)T \) |
| 29 | \( 1 + (-0.987 - 0.156i)T \) |
| 31 | \( 1 + (-0.809 - 0.587i)T \) |
| 37 | \( 1 + (-0.809 + 0.587i)T \) |
| 43 | \( 1 + (0.951 - 0.309i)T \) |
| 47 | \( 1 + (-0.891 - 0.453i)T \) |
| 53 | \( 1 + (0.987 + 0.156i)T \) |
| 59 | \( 1 + (-0.309 - 0.951i)T \) |
| 61 | \( 1 + (0.951 + 0.309i)T \) |
| 67 | \( 1 + (-0.156 + 0.987i)T \) |
| 71 | \( 1 + (-0.156 - 0.987i)T \) |
| 73 | \( 1 + iT \) |
| 79 | \( 1 + (-0.707 - 0.707i)T \) |
| 83 | \( 1 - T \) |
| 89 | \( 1 + (-0.891 + 0.453i)T \) |
| 97 | \( 1 + (-0.156 + 0.987i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.65275260315312416658261732307, −24.272447301046868841935902638932, −23.95226558891823388833132643243, −22.92610438734042623907819079436, −21.83920913523847191469682193949, −21.39319787560375177860527488198, −20.731220566127709997821443022205, −19.56400947243385396130768316111, −17.98379877152171727449137674759, −16.96283951585443028581170698696, −16.37179316712699458752520544820, −15.75456807170440109465774670626, −14.438549218793434653312972248339, −13.65820113453647599343774997617, −12.6265107512919325669301719323, −11.65958003284997390249580844688, −10.93620210126037886094337914825, −9.5569324955538457756298162583, −8.62905310767481631151337929634, −7.07767089941079544698500047622, −5.8146115495942141967271989884, −5.445264429291843209251909854692, −4.25274630176230580010579100653, −3.315175228943662799822110157054, −1.46610208172458995482604136996,
1.444032410090491335038593477039, 2.448137921814464857417287751379, 3.73535581650225925292210675681, 5.29640088115105790969671772988, 5.90350952192729743659166463847, 6.92949649984513405201920417956, 7.73672233512389606512585975409, 9.920499046231610946656590190037, 10.51879945470220663656190400963, 11.56476279956285018211140535622, 12.46005762538750451550825576060, 13.19999190196585879477512012205, 14.22561357130667946080626515526, 14.94271679661192000562908755364, 16.20336617402930722313280050227, 17.24880442082161176596607156862, 18.346009879189654873953530522825, 18.85792516198424283241130635748, 20.20717924896453690138312950256, 20.97109894133945516456428133919, 22.28459453591168692655889155077, 22.632699495530593403214797411475, 23.28847763915966883799134427512, 24.44191524790911687212266944360, 25.20887894450231417321851606304