L(s) = 1 | + (−0.866 + 0.5i)2-s + (−0.965 + 0.258i)3-s + (0.5 − 0.866i)4-s + (−0.866 + 0.5i)5-s + (0.707 − 0.707i)6-s + i·8-s + (0.866 − 0.5i)9-s + (0.5 − 0.866i)10-s + (−0.965 + 0.258i)11-s + (−0.258 + 0.965i)12-s + (0.707 + 0.707i)13-s + (0.707 − 0.707i)15-s + (−0.5 − 0.866i)16-s + (0.258 + 0.965i)17-s + (−0.5 + 0.866i)18-s + (−0.965 − 0.258i)19-s + ⋯ |
L(s) = 1 | + (−0.866 + 0.5i)2-s + (−0.965 + 0.258i)3-s + (0.5 − 0.866i)4-s + (−0.866 + 0.5i)5-s + (0.707 − 0.707i)6-s + i·8-s + (0.866 − 0.5i)9-s + (0.5 − 0.866i)10-s + (−0.965 + 0.258i)11-s + (−0.258 + 0.965i)12-s + (0.707 + 0.707i)13-s + (0.707 − 0.707i)15-s + (−0.5 − 0.866i)16-s + (0.258 + 0.965i)17-s + (−0.5 + 0.866i)18-s + (−0.965 − 0.258i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 287 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 287 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.01226227318 + 0.01984133084i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.01226227318 + 0.01984133084i\) |
\(L(1)\) |
\(\approx\) |
\(0.3333667721 + 0.1446915858i\) |
\(L(1)\) |
\(\approx\) |
\(0.3333667721 + 0.1446915858i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 41 | \( 1 \) |
good | 2 | \( 1 + (-0.866 + 0.5i)T \) |
| 3 | \( 1 + (-0.965 + 0.258i)T \) |
| 5 | \( 1 + (-0.866 + 0.5i)T \) |
| 11 | \( 1 + (-0.965 + 0.258i)T \) |
| 13 | \( 1 + (0.707 + 0.707i)T \) |
| 17 | \( 1 + (0.258 + 0.965i)T \) |
| 19 | \( 1 + (-0.965 - 0.258i)T \) |
| 23 | \( 1 + (0.5 + 0.866i)T \) |
| 29 | \( 1 + (-0.707 - 0.707i)T \) |
| 31 | \( 1 + (-0.5 + 0.866i)T \) |
| 37 | \( 1 + (-0.5 - 0.866i)T \) |
| 43 | \( 1 - iT \) |
| 47 | \( 1 + (-0.965 - 0.258i)T \) |
| 53 | \( 1 + (-0.965 + 0.258i)T \) |
| 59 | \( 1 + (0.5 - 0.866i)T \) |
| 61 | \( 1 + (0.866 - 0.5i)T \) |
| 67 | \( 1 + (-0.258 - 0.965i)T \) |
| 71 | \( 1 + (-0.707 - 0.707i)T \) |
| 73 | \( 1 + (-0.866 - 0.5i)T \) |
| 79 | \( 1 + (0.258 - 0.965i)T \) |
| 83 | \( 1 - T \) |
| 89 | \( 1 + (0.258 - 0.965i)T \) |
| 97 | \( 1 + (-0.707 + 0.707i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.90172275506878052712132197022, −24.00470863151254896080858633995, −23.11244082062333293093279765170, −22.28487453431858969861295317175, −20.93390615761376512241427901206, −20.514583402873210469648400858321, −19.15146205765653365357757866945, −18.582049248293927739332849266926, −17.772147612066504946699445775482, −16.5795064385710594549570403585, −16.206138545923586389771545450241, −15.20928693922305878485022799121, −13.04445083878913221507627776289, −12.734979569204165519435078557460, −11.5142812385336575403328953002, −10.97345444566247165599328291389, −10.02270942302608450550162825950, −8.595901725092712034516363541141, −7.8383708395713958163423720520, −6.873232432094527818538839812135, −5.494459677967396391258084154431, −4.27210568429108453648650166559, −2.90612382298349875133333124737, −1.242209201048576649150659508853, −0.02590511278469145361725472932,
1.79253259356975034642461396051, 3.69788617617603309768560669971, 4.99336802346453631584549990305, 6.126129627813957488637144629519, 7.00038771937304903861324259629, 7.92179478337181935824339192449, 9.08103110167198077850267673433, 10.40339368592682220192992295821, 10.88967325162288653066325274122, 11.75171963278578494194502562771, 12.98739026359079482693702275543, 14.62301369632340745145484736678, 15.48504813482587939735044526246, 16.01972637568541995239003847618, 17.025279982018294611501839795124, 17.8598234600102848787311053319, 18.79000787957408772824203457934, 19.32762423506000270110406246451, 20.7203043175833062309941929399, 21.598474120250760005492506154884, 22.98179317762476418465840035336, 23.55646679745986085767492416468, 23.98763591231882176777071393866, 25.52234848400087567960453407400, 26.314751824583090671799469103837