L(s) = 1 | + (0.994 − 0.104i)2-s + (0.965 + 0.258i)3-s + (0.978 − 0.207i)4-s + (−0.743 + 0.669i)5-s + (0.987 + 0.156i)6-s + (0.951 − 0.309i)8-s + (0.866 + 0.5i)9-s + (−0.669 + 0.743i)10-s + (0.0523 + 0.998i)11-s + (0.998 + 0.0523i)12-s + (0.156 − 0.987i)13-s + (−0.891 + 0.453i)15-s + (0.913 − 0.406i)16-s + (−0.998 + 0.0523i)17-s + (0.913 + 0.406i)18-s + (−0.933 − 0.358i)19-s + ⋯ |
L(s) = 1 | + (0.994 − 0.104i)2-s + (0.965 + 0.258i)3-s + (0.978 − 0.207i)4-s + (−0.743 + 0.669i)5-s + (0.987 + 0.156i)6-s + (0.951 − 0.309i)8-s + (0.866 + 0.5i)9-s + (−0.669 + 0.743i)10-s + (0.0523 + 0.998i)11-s + (0.998 + 0.0523i)12-s + (0.156 − 0.987i)13-s + (−0.891 + 0.453i)15-s + (0.913 − 0.406i)16-s + (−0.998 + 0.0523i)17-s + (0.913 + 0.406i)18-s + (−0.933 − 0.358i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 287 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.900 + 0.434i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 287 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.900 + 0.434i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.737293675 + 0.6251011513i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.737293675 + 0.6251011513i\) |
\(L(1)\) |
\(\approx\) |
\(2.209875793 + 0.2867160047i\) |
\(L(1)\) |
\(\approx\) |
\(2.209875793 + 0.2867160047i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 41 | \( 1 \) |
good | 2 | \( 1 + (0.994 - 0.104i)T \) |
| 3 | \( 1 + (0.965 + 0.258i)T \) |
| 5 | \( 1 + (-0.743 + 0.669i)T \) |
| 11 | \( 1 + (0.0523 + 0.998i)T \) |
| 13 | \( 1 + (0.156 - 0.987i)T \) |
| 17 | \( 1 + (-0.998 + 0.0523i)T \) |
| 19 | \( 1 + (-0.933 - 0.358i)T \) |
| 23 | \( 1 + (0.104 + 0.994i)T \) |
| 29 | \( 1 + (-0.453 - 0.891i)T \) |
| 31 | \( 1 + (0.669 - 0.743i)T \) |
| 37 | \( 1 + (0.669 + 0.743i)T \) |
| 43 | \( 1 + (-0.587 - 0.809i)T \) |
| 47 | \( 1 + (-0.629 + 0.777i)T \) |
| 53 | \( 1 + (0.544 - 0.838i)T \) |
| 59 | \( 1 + (-0.913 - 0.406i)T \) |
| 61 | \( 1 + (-0.406 - 0.913i)T \) |
| 67 | \( 1 + (-0.838 - 0.544i)T \) |
| 71 | \( 1 + (0.891 + 0.453i)T \) |
| 73 | \( 1 + (-0.866 + 0.5i)T \) |
| 79 | \( 1 + (-0.258 - 0.965i)T \) |
| 83 | \( 1 - T \) |
| 89 | \( 1 + (-0.358 + 0.933i)T \) |
| 97 | \( 1 + (0.891 - 0.453i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.12183085966138419008283347828, −24.38643025620980217057318384117, −23.89544275900965876136181734253, −22.97048107766703994853222841702, −21.57897588658018215551468510559, −21.099391045748963599689449978480, −20.001339822283670403817850687825, −19.5106631413116093671875005566, −18.50544889254757958987757232625, −16.71985961121462990449759236805, −16.12751666000262329506890188350, −15.13186908846961162161399865482, −14.31979498273766073740207426498, −13.39651511644710958176420125890, −12.6749182376130627503801398422, −11.710336220083705921873333422090, −10.695256108870155903821173349070, −8.91745337930660369138387853951, −8.35462618771022419078386836964, −7.15996048816153048325137503343, −6.23940529300695843540032210567, −4.61797421921458576578176034026, −3.96038892799935931461054020452, −2.838054639705095419079513946164, −1.53901451368238356946784095114,
2.02869266521898457107562592482, 2.95586306522584012968412434477, 3.973605443146439357507384154854, 4.74001969428407156303433789350, 6.38875723655144207319327471498, 7.38471099737186479094268554137, 8.16465163560512190107130037261, 9.7439383767131795983777881965, 10.66746383652493975153989959380, 11.61282873055875934231546405030, 12.85210062028917019800951269460, 13.49695412411857827574173621429, 14.72239255969435480263113977964, 15.312429903471033615133623053564, 15.65921161977423049758486097481, 17.27859702225407654456474159731, 18.66205861702241076410655820781, 19.67332837374904176707785809417, 20.114543986506470199116729679757, 21.06213707192202798952184031619, 22.09371637427213327408289017946, 22.778023262732720771571869622283, 23.68418394195364268852201399482, 24.68087380615618303261983685025, 25.57763339565980076064428464718